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cosity, Pa·s; ρ: Density, kg/m3

Subscripts
b: Base fluid; f: Fluid; i: Inner; loss: Heat loss; net: Net; 

nf: Nanofluid; o: Outer; p: Particle; w: Wall; x: Local value

Introduction
Effective cooling techniques are of great importance 

in high heat flux applications, such as large parallel com-
puter systems and aircraft combustion chambers. As 
the temperature and heat load in scramjet applications 
are very high, effective heat transfer systems and effi-

Abstract
Regenerative cooling system is thought to be an effective and practical solution to better thermal 
management for high heat flux applications. In this paper, the potential of nanofluids as regener-
ative coolants at supercritical pressures was evaluated. Two-step method was applied to prepare 
Al2O3-kerosene and Fe3O4-kerosene nanofluids. Then experiments were carried out to study the 
heat transfer characteristics of nanofluids flowing in a vertical minitube at supercritical pressures. 
Parametric effects of mass flow rate, heat flux, pressure and particle content on the heat transfer 
performance are presented. Results show that increasing the flow rate or the working pressure 
could enhance the heat transfer performances, yet higher heat flux leads to poorer heat transfer 
performances. Besides, the addition of nanoparticles tend to deteriorate heat transfer at supercriti-
cal pressures because deposition of the nanoparticles smoothens the wall roughness and presents 
an additional thermal resistance. As the particle content increases, the heat transfer performance 
becomes worse.
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Nomenclature
c: Particle content, wt%; cp: Specific heat, J/(kg·K); 

d: Diameter, m; HTC,h: Heat transfer coefficient, W/
(m2·K); I: Current, A; L: Length, m; P: Pressure, Pa; Qm: 
Mass flow rate, kg/s; Q’: Internal heat, W/m3; q: Heat 
flux, W/m2; R: Radius, m; r: Heat transfer coefficient ra-
tio; T: Temperature, K; U: Voltage, V; x: Distance from 
the tube inlet, mm

Greek symbols
λ: Thermal conductivity, W/(m·K); μ: Dynamic vis-
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Nanofluids have received considerable attention in ther-
mal science and engineering during the last decade [8-
10]. By dispersing nanoparticles into hydrocarbon fuel 
kerosene, the formed nanofluid might be a promising 
coolant as the nanoparticles can enhance the thermal 
conductivity of kerosene, especially at high temperatures 
near the critical point. Since nanofluids are generally 
thought to have better thermo-physical properties (e.g. 
higher thermal conductivity [12,13]), nanofluid fuels 
might be potential regenerative cooling working fluids 
and might further enhance heat transfer [14-16]. How-
ever, few literatures have been published on the studies 
of supercritical nanofluids. Rahimi [17] adopted a water 
base Al2O3 nanofluid as a coolant in supercritical water 
reactors. They found that the utilization of nanofluid 
could enhance the core outlet temperature and increase 
the heat transfer coefficient in Super-heater zones. Ruan 
[18] numerically investigated the turbulent heat transfer 
of a nanofluid, methane-CuO, in a circular cooling tube 
at supercritical pressures. Their results indicated poten-
tial applications of nanofluids in enhancing heat transfer 
at supercritical pressures.

Under supercritical conditions, the large variation 
of thermo-physical properties at varying temperatures 
might lead to interesting thermodynamic and transport 
properties of nanofluids. Further development of regen-
erative cooling systems could be derived from supercrit-

cient coolants are necessary for scramjet engines to sur-
vive the extreme heat generated in hypersonic flight. To 
improve the cooling efficiency of heat transfer systems, 
the regenerative cooling system, where engine fuel works 
as a coolant and travels through the cooling tubes along 
the chamber wall, is developed as an effective thermal 
management technique [1-3]. Technically, the pressures 
in scramjet applications are above supercritical pressures 
and the fuel temperature may also exceed the critical 
temperature by absorbing heat from the chamber wall. 
At supercritical pressures, the thermo-physical proper-
ties of fuels exhibit extremely rapid variation with tem-
perature, especially near the pseudocritical point, which 
is quite different from that at subcritical pressures. The 
unusual variations of the thermo-physical properties of 
supercritical fuels may enhance the heat transfer signifi-
cantly and thus have attracted researchers’ attention.

Experimental and numerical investigations have been 
extensively conducted on heat transfer performance of 
fluids at supercritical pressures, but the previous studies 
in the open literature are mainly focused on supercritical 
heat transfer of CO2 and H2O [4-8]. Compared to CO2 
and H2O, the database on the convective heat transfer of 
hydrocarbon fuels is at a relative small scale [9-11].

A nanofluid is a fluid-solid mixture which is formed 
by suspending the ultrafine solid nanoparticles (1-100 
nm in size) in a base fluid, generally water and oil, etc. 

Figure 1: Schematic of the experimental setup.
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fluids was noticed after more than two months. Besides, 
experiments were conducted within two days after the 
nanofluid preparation.

Data Reduction
The local inner wall temperature, Twi,x, can be de-

duced from the outer wall temperature (Two,x) by assum-
ing one-dimensional heat conduction with an internal 
heat source (Q’)as:

( )2 2 2
, ,

1 1 ln
4 2o i o

i
wi x wo x

o

RQ QT T R R R
Rλ λ

′ ′
= + − +                      (1)

The local heat transfer coefficient (HTC) along the 
tube length can be calculated by the following equation:

, ,

net
x

wi x f x

qh
T T

=
−

            (2)

Where Tf,x is the local fuel temperature and can be cal-
culated from the local enthalpy, heat flux and mass flow 
rate; qnet is the net heat flux and can be calculated by:

net x loss loss
i

UIq q q q
D Lπ

= − = −           (3)

Where qx is the total heat flux, qloss is the heat loss at 
the test section, which was obtained experimentally. The 
tube was wrapped with insulation first; then by varying 
the heating power, the outer wall temperature of the 
tube became stable after a certain amount of time when 
there was no flowing fluid through it. At steady state, the 
heating power input into the tube was considered to be 
almost the same as the heat loss at a certain tube outer 
temperature. Thus, by plotting the relationship between 
the heating power and the outer wall temperature, the 
heat loss at different outer tube wall temperatures could 
be identified by interpolation from the figure. qloss was 
founded to be less than 5% of the electric power input to 
the test section. The relative errors for measurement and 
accumulated errors by calculations are listed in Table 1.

At supercritical conditions, the thermo-physical 
properties of the hydrocarbon fuel mixture undergo 
strong variations. Thus it is very important to accurate-
ly predict the property variations with temperature. The 
density, specific heat, thermal conductivity and viscosi-
ty of the aviation kerosene at various temperatures were 
obtained by a 10-species surrogate proposed by Zhong, 
et al. [1] and the NIST Supertrapp software [20-22]. The 

ical nanofluid studies. Therefore the first attempt was 
carried out to study heat transfer characteristics of nano-
fluids at supercritical pressure. In this paper, we prepare 
stable Al2O3-kerosene and Fe3O4-kerosene nanofluids 
and study the heat transfer mechanism of the organic 
nanofluids under supercritical pressures experimentally. 
Insights were offered on the effects of the factors such as 
mass flow rate, pressure, heat flux and particle contents 
in this work.

Experimental Apparatus
The measured critical pressure and temperature of 

aviation kerosene are 2.4 MPa and 372.35 °C, respective-
ly. The experimental loop in this paper was constructed 
to bear high temperature (600 °C) and high pressure (10 
MPa), which is schematically introduced in Figure 1.

The nanofluid was circulated and compressed by 
apiston pump. A pulse damper filled with compressed 
nitrogen was installed after the pump to reduce the fluc-
tuation of the flow rate. The nanofluid was heated to the 
required inlet fuel temperature in the preheating section 
and then sent to the experimental section, being heat-
ed and tested at supercritical conditions. After that, the 
fuel was condensed, recollected and fed into the reser-
voir manually. The test tube is a vertical stainless steel 
(1Cr18Ni9Ti) tube with inner diameter (d) of 2.0 mm 
and outer diameter of 3.0 mm. The heated section of the 
test tube is 1000 mm long, and the two unheated sec-
tions (each with a length of 100 mm, i.e., 50 d) are lo-
cated before and after the heated section. A low-voltage 
direct-current power (SKD-60V/120A) was used to heat 
the test section and simulate constant heat flux condi-
tion. The inlet and outlet temperatures of the test section 
were carefully obtained using armored K-type thermo-
couples. The local wall temperatures of the test section 
were measured by twelve K-type thermocouples (φ 0.3 
mm),which were carefully welded onto but insulated 
with the tube outer surface. Details of the control param-
eters and operation of the experimental loop were given 
in Ref. [19].

A two-step method was applied to prepare Al2O3-ker-
osene and Fe3O4-kerosene nanofluids. Aviation kerosene 
was used as the base fluid, and the Al2O3 and Fe3O4 parti-
cles were surface-modified by oleic acid to improve dis-
persion stability. The dispersion was mixed by an electric 
stirrer for 30 minutes, followed by ultrasonic oscillation 
for 45 minutes. After the mixing, the nanoparticle size in 
nanofluids was measured by a MALVERN ZETASIZER 
NANO 590. The average nanoparticle size for Al2O3-ker-
osene nanofluid is 403.9 nm and for Fe3O4-kerosene 
nanofluid is 148.5 nm. A sample of the nanofluid was 
settled aside after the mixing. Marginal sedimentation in 
the prepared Al2O3-kerosene and Fe3O4-kerosene nano-

Table 1: Error analysis.

Item Error (%)
Temperature 0.78
Pressure 0.36
Mass flow rate 1.67
Heat flux 2.36
Heat transfer coefficient 2.6
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affected by the varying flow rate. The effects of mass flow 
rate on heat transfer can be seen from Figure 2 and Figu-
re 3. Figures show that the local wall temperature basical-
ly increases along the tube length at different mass flow 
rate, while the heat transfer coefficient first increases to a 
maximum value and then continuously decreases.

By inspecting Figure 4 carefully, we can divide the ex-
perimental section into three zones along the tube length 
at supercritical pressures:

1. Inlet zone, where the tube wall temperatures are low-
er than supercritical temperature. In this zone, the 
heat transfer mechanism could be identified as con-
vective flow. As the local wall temperature and fluid 
temperature are relatively low, not large enough to 
significantly affect the thermo-physical properties, 
the variations of the local wall temperature and heat 
transfer coefficient are small and they both increase 
along the tube.

2. Middle zone, where the tube wall temperature is 
higher than the supercritical temperature. As the 
near wall fluid has very low density and low viscosity, 

comparison of numerical data and experimental data 
[23-26] for the thermo-physical properties of aviation 
kerosene at P = 3 Mpa can be found in our previous pub-
lication [27]. Good agreement has been reached between 
the calculated results and experimental data.

Based on the homogeneous mixture model and heat 
transfer of the diluted nanofluids [28,29], the following 
expressions, as shown in Table 2, are used to calculate 
density, specific heat and thermal conductivity of the 
Al2O3 and Fe3O4 particles and nanofluid. The nanofluid 
properties can be predicted by the nanofluid correlation 
listed in Table 2, especially at very small volume content 
(about 0.02 vol.%).

Table 3 briefly summarizes the operating conditions 
for all experiments.

Results and Discussion
Effects of mass flow rate

The mass flow rate is an important factor that in-
fluences the heat transfer performance at supercritical 
pressures, as the turbulence and boundary layer will be 

Table 2: Thermo-physical properties of particle and nanofluid.

Al2O3 Fe3O4

ρp 3970 5100
cp,p 102.429 + 38.7498T/1000-15.9109(T/1000)2 

+ 2.628181(T/1000)3 - 3.00755/(T/1000)2
104.2096 + 178.5108T/1000-10.6151(T/1000)2 + 
1.132534(T/1000)3 – 0.9942/(T/1000)2

λp 9*10-5 T2 - 0.1426T + 69.117
ρnf (1- ϕp) ρf + ϕpρp

cp,nf ((1- ϕp) ρf cp,f + ϕpρpcp,p)/ρnf

μnf (1 + 2.5 ϕp)μf

λnf (λp+(n-1) λf + (n-1) ϕp(λp-λf))λf/(λp+ (n-1) λf - ϕp(λp - λf))

Note: n = 3 for spherical particles.

Table 3: Operating parameters.

Direction Pressure Mass flow rate Operating heat flux Nanoparticle contents
Upward 3-4.5 MPa 2-3.5 g/s 190-300 kW/m2 0.02-0.1 wt.%

A) B)
Figure 2: The local wall temperature distributions along tube length: a) Al2O3-kerosene nanofluid; b) Fe3O4-kerosene nanofluid.
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Effects of heat flux
As the heat flux may influence the changes of fluid 

temperature and wall temperature, while the variation 
of fluid temperature and wall temperature will affect the 
variation of thermo-physical properties, the heat flux 
might have significant influence on the heat transfer of 
nanofluid.

Figure 4 and Figure 5 show the wall temperature and 
HTC distributions of Al2O3-kerosene nanofluid. From 
the figures, we know that smaller heat flux leads to bet-
ter heat transfer performances of nanofluids. As the bulk 
fluid temperature increases, the specific heat will in-
crease while the viscosity and density will both decrease. 
Thus, heat transfer performances will be enhanced by 
hotter bulk fluids. However on the other hand, as shown 
in Figure 4, when the heat flux is higher, the local inner 
tube wall temperature is also higher. Hotter tube wall, 

a film-like fluid will embrace the fluid in center and 
become a barrier with high thermal resistance for the 
heat transfer between the bulk flow and the tube wall. 
Thus, this type of pseudo-film flow deteriorates heat 
transfer performances. Besides, the density and vis-
cosity of the near wall fluid are both lower than those 
of the fluid in center, so the nanoparticles will be kept 
at fluid in center. Thus, the nanoparticles could not 
enhance heat transfer performances at this zone and 
the local wall temperature increases and the corre-
sponding heat transfer coefficient decreases.

3. Outlet zone, where the local wall temperature is above 
the pseudocritical temperature. In this zone, the specif-
ic heat of the fluid near the wall maintains a high value 
and the thermal conductivity begins to increase. These 
two factors suppress the heat transfer deterioration. 
Thus the variations of the local wall temperature and 
heat transfer coefficient become gentle again.

A) B)
Figure 3: Heat transfer coefficient distributions along tube length: a) Al2O3-kerosene nanofluid; b) Fe3O4-kerosene nanofluid.

Figure 4: Twi of Al2O3-kerosene nanofluid (solid symbols) and 
kerosene (hollow symbols) distributions along tube length.

Figure 5: HTC of Al2O3-kerosene nanofluid (solid symbols) 
and kerosene (hollow symbols) distributions along tube length.
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formance than the Al2O3-kerosene nanofluid. This might 
be due to the inner tube wall modification by nanoparticle 
depositions. Details of the comparison between the base 
fluid and the nanofluids will be presented in Section 4.4.

Effects of pressure
From the thermo-physical properties of kerosene as 

shown in Figure 6, it is obvious that when the tempera-
ture of the kerosene is lower than the critical tempera-
ture, pressure has a relatively small effect on density, vis-
cosity and thermal conductivity. However, at tempera-
tures higher than the supercritical temperature, pressure 
tends to present strong effects on the thermo-physical 
properties. The changes in thermo-physical properties 
affect accordingly the heat transfer performance, simi-
lar as above. Figure 7 and Figure 8 show the local wall 
temperature and fluid temperature distributions of 
Fe3O4-kerosene nanofluid along the tube length at pres-
sures ranging from 2.5 to 4.5 MPa.

which is caused by higher heat flux, provokes severer 
pseudo-film flow near the tube wall, so the heat transfer 
performances will be worse. Thus, heat flux has intrigu-
ing effects on heat transfer performances of nanofluids at 
supercritical pressures. At the current situation, though 
not shown here, the bulk fluid temperatures are all be-
low the supercritical temperature, so the heat transfer 
enhancement caused by variations of thermo-physical 
properties near the supercritical point has not induced 
in these cases. Therefore, the heat transfer deterioration 
effects of pseudo-film flow overcome the heat transfer 
enhancement of hotter fluids and the heat transfer coef-
ficients decrease by increasing heat flux.

The local wall temperature and HTC of the base fluid 
(kerosene, hollow symbols) are also presented in Figure 4 
and Figure 5. It can be seen that the Al2O3-kerosene nano-
fluids have higher wall temperature and lower HTC val-
ues than that of kerosene at the same working conditions, 
which means that the base fluid has better heat transfer per-

Figure 6: Variation of the kerosene properties with tem-
perature (P = 3, 4 and 5 MPa).

Figure 7: Twi of Fe3O4-kerosene nanofluid distributions along 
tube length.

Figure 8: Tf  of Fe3O4-kerosene nanofluid distributions along 
tube length.

Figure 9: HTC of Fe3O4-kerosene nanofluid distributions 
along tube length.
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different particle content and those of the base fluid 
(kerosene) at the same working conditions are shown in 
Figure 10. We could see that most of the data points are 
under the dotted line of 1.0, which means that nanofluids 
have lower heat transfer coefficients than the base fluid 
and the nanofluids tend to deteriorate the heat transfer 
performance at supercritical pressures. Besides, the 0.1 
wt% nanofluids have the smallest heat transfer ratios 
while the ratios of 0.02 wt% nanofluids are closest to the 
1.0 dotted line. Thus, we conclude that nanofluids have 
poorer heat transfer performances than the base fluid 
at supercritical pressures, and higher particle contents 
leads to worse heat transfer performances.

The heat transfer deterioration effects of nanofluids 
might be caused by the modification of inner tube wall 
surfaces by nanoparticles precipitations. At supercritical 
conditions, the viscosity and density of the base fluids are 
both very low, so the base fluid might not be able to hold 
the nanoparticles. In addition, the decrease in viscosity 
leads to strong turbulence and thus the nanoparticles 
move violently. These two factors lead to the deposition 
of nanoparticles on the inner tube wall surfaces and thus 
deteriorate the heat transfer performance. A Scanning 
Electron Microscope (SEM) as shown in Figure 11, was 
used to identify the modifications of the inner wall sur-
face by nanofluids. It was found that there exist many 
bulges on the inner surface before experiments. How-
ever, after the nanofluid heat transfer experiments, the 
bulges disappeared and the surface became smoother. 
Besides the additional thermal resistance caused by the 
nanoparticle deposit layer, roughness effects of the bulg-
es might be suppressed in the smoother tube. Thus the 
HTC of Al2O3-kerosene and Fe3O4-kerosene nanofluids 
tends to be lower than that of pure kerosene. However, 
further investigations should be performed to identify 

From the figures, we know that at different working 
pressure, if the heat fluxes and flow rates are the same, 
the local wall temperature and fluid temperature are al-
most the same when the they are both lower than the 
critical temperature. When the local wall temperature is 
higher than the critical temperature, increasing pressure 
causes a decrease in the local wall temperature.

Figure 9 depicts the local HTC distributions along the 
tube at different working pressures. The local HTC in-
creases as pressure increases, especially when the pressure 
(i.e., 4.5 MPa) is much larger than the critical pressure. 
The reasons lie in the changes of the thermo-physical 
properties of kerosene at different pressures. As shown 
in Figure 6, the variations of density and heat capacity 
are much smoother at 4.5 MPa and the heat capacity 
increases as pressure increases. The larger thermal con-
ductivity and heat capacity at higher pressures enhance 
the heat transfer. Besides, the viscosity and density both 
increase with increasing pressures, thus the pseudo-film 
flow would be suppressed at higher pressures and the 
nanofluids could have better heat transfer performanc-
es. Consequently the heat transfer coefficient is higher at 
higher working pressures.

Effects of particle content
In order to study the heat transfer performances of 

nanofluids at supercritical pressure, a heat transfer co-
efficient ratio is defined as follows to compare the heat 
transfer coefficients of nanofluids and those of base fluid 
under the same working conditions:

 = nf

b

h
r

h
              (1)

The comparisons between heat transfer coefficients 
of Al2O3-kerosene and Fe3O4-kerosene nanofluids with 

A) B)
Figure 10: Heat transfer ratios of nanofluids at supercritical pressure: a) Al2O3-kerosene nanofluid; b) Fe3O4-kerosene na-
nofluid.
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mance when the inner wall temperature is higher than 
the critical temperature. As higher pressure will re-
strain the film-like flow near the tube wall, the heat 
transfer performances at higher pressure will be better.

4. The addition of nanoparticles deteriorates the heat 
transfer performance of Al2O3-kerosene and Fe3O4-ker-
osene nanofluids at supercritical pressures. As the par-
ticle content increases, the heat transfer coefficient 
decreases due to the modification of the inner wall 
surface by the nanoparticles.
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