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Abstract

It is shown that the smooth-wall boundary conditions specified for commonly used dissipation-
based turbulence models are mathematically incorrect. It is demonstrated that when these 
traditional wall boundary conditions are used, the resulting formulations allow either an 
infinite number of  solutions or no solution. Furthermore, these solutions do not enforce energy 
conservation and they do not properly enforce the no-slip condition at a smooth surface. This 
is true for all dissipation-based turbulence models, including the k-ɛ, k-ω, and k-ζ models. 
Physically correct wall boundary conditions must force both k and its gradient to zero at a smooth 
wall. Enforcing these two boundary conditions on k is sufficient to determine a unique solution 
to the coupled system of  differential transport equations. There is no need to impose any wall 
boundary condition on ɛ, ω, or ζ at a smooth surface and it is incorrect to do so. The behavior of 
ɛ, ω, or ζ approaching a smooth surface is that required to satisfy the differential equations and 
force both k and its gradient to zero at the wall.

Nomenclature
C1-C5: Arbitrary Constants of Integration, Eq. (43); 

1εC , 2εC : Turbulence Model Closure Coefficients, 
Eqs. (6) and (7); 1ωC , 2ωC : Turbulence Model 
Closure Coefficients, Eqs. (73) and (74); µC : 
Turbulence Model Closure Coefficient, Eqs. (2) 
and (7); 1f , 2f : Wall Damping Functions, Eq. (9) 
or (77); kf : Wall Damping Function, Eq. (76); 

µf : Wall Damping Function, Eq. (8) or (75); E
: Wall Damping Function, Eq. (9); +E : Wall-
Scaled Dimensionless Wall Damping Function, 

62
τν uEE ≡+ ; J



 : Jacobian Tensor for a Vector Field; 

k : Turbulent Kinetic Energy Per Unit Mass, Eq. 
(1); +k : Wall-Scaled Dimensionless Turbulent 
Kinetic Energy, Eq. (32); k̂ : Arbitrary Dependent 
Variable, Eqs. (42) and (88); l : Channel Half 
Width; +l : Wall-Scaled Dimensionless Channel 
Half Width, ντ lul ≡+ ; p̂ : Pseudo Mean Pressure, 

])([ˆ
3
2 V⋅∇++++≡ to kZgpp ννρρ , where p  is the 

Mean Pressure, go is the Standard Acceleration 
of Gravity at Sea Level, )( HRHRZ EE += , H is 
Geometric Altitude, and RE is the Radius of the 
Earth; p+: Wall-Scaled Dimensionless Pseudo Mean 
Pressure Gradient, Eq. (32); +q : Change of Variables, 
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Eq. (51); tR : Turbulent Dissipation Reynolds 
Number, Eq. (35) or (81); yR : Turbulent Wall 
Reynolds Number, Eq. (35); S



 : Strain-Rate Tensor 
for a Vector Field; +u : Wall-Scaled Dimensionless 
x-Velocity Component, Eq. (32); û : Arbitrary 
Dependent Variable, Eqs. (42) and (88); τu : Friction 
Velocity, Eq. (28); V : Mean Velocity Vector; V~ : 
Fluctuating Velocity Vector; V~ : Magnitude of the 
Fluctuating Velocity Vector; xV : x Component of 
Mean Velocity Vector; yV : y Component of Mean 
Velocity Vector; xV~ : x Component of Fluctuating 
Velocity Vector; x: Axial Coordinate; y: Normal 
Coordinate Measured Outward from a Wall; +y : 
Wall-Scaled dimensionless y coordinate, Eq. (32); 
ɛ: Turbulent energy-dissipation parameter, Eq. 
(1); ε~ : Turbulent Energy-Dissipation Parameter, 

oεεε −≡~ ; +ε : Wall-Scaled Dimensionless Turbulent 
Dissipation Parameter, Eq. (32); ε̂ : Arbitrary 
Dependent Variable, Eq. (42); oε : Wall damping 
function, Eq. (10); +oε : Wall-Scaled Dimensionless 
Wall Damping Function, Eq. (32); ζ : Turbulent 
Energy-Dissipation Parameter, νεζ ≡ ; +θ : Change 
of Variables, Eq. (51); ν : Kinematic Molecular 
Viscosity; tν : Kinematic Eddy Viscosity; +ν : Ratio 
of the Turbulent Eddy Viscosity to the Molecular 
Viscosity, Eq. (33); ρ : Fluid Density; kσ : Turbulence 
Model Closure Coefficient, Eqs. (5) and (7); εσ : 
Turbulence model closure coefficient, Eqs. (6) and 
(7); wτ : Wall Shear Stress, Eq. (28); ω : Turbulent 
Energy-Dissipation Frequency, )( kCµεω ≡ ; +ω : 
Wall-Scaled Dimensionless Turbulent Dissipation 
Frequency, Eq. (79); ω̂ : Arbitrary Dependent 
Variable, Eq. (88).

Introduction
Many of the turbulence models that are now 
commonly used for computational fluid dynamics 
(CFD) are based on the analogy between molecular 
and turbulent transport that was first proposed by 
Boussinesq [1]. The majority of these turbulence 
models are usually classified as either k-ɛ, k-ω, or k-ζ 
models. Conventional k-ɛ, k-ω, and k-ζ turbulence 
models are often thought of as being fundamentally 
different. Yet, in a larger sense, these three model 
classifications could all be thought of as energy-
dissipation models. This is because all such models 
are based on the hypothesis that Boussinesq’s eddy 

viscosity is proportional to the product of the root 
mean square fluctuating velocity, or ,21k  and the 
dissipation length scale ε23k . The parameters k 
and ɛ are defined in terms of the fluctuating velocity 
as

1 1 2
2 2 ( ) ( )V V , J V J Vk V ε ν≡ ⋅ = ≡ ⋅

 

 

    
               (1)

where V~  is the fluctuating velocity vector, )~(VJ


  is 
its Jacobian tensor, and the over score denotes an 
ensemble mean.

The eddy-viscosity model that is the foundation 
for all commonly used k-ɛ, k-ω, and k-ζ turbulence 
models is

εν µ
2kCt =                      (2)

where µC  is a dimensionless closure coefficient 
that is nearly universally accepted as being equal 
to 0.09. The k-ɛ turbulence models use Eq. (2) 
directly. The k-ω turbulence models use the change 
of variables )( kCµεω ≡  to transform Eq. (2) to the 
equivalent relation given by ων kt = . Similarly, the 
k-ζ turbulence models use the change of variables 

νεζ ≡  to transform Eq. (2) to its k- ζ equivalent, 
)(2 ζνν µ kCt = . The commonly used k-ɛ, k-ω, and k-ζ 

turbulence models are all based on the hypothesis 
that the characteristic length scale for turbulent 
transport is proportional to the characteristic length 
scale for turbulent energy dissipation.

The k-ɛ turbulence model that is the foundation for most 
modern Boussinesq-based turbulence models is that  
of Jones and Launder [2]. In addition to the algebraic 
equation for the kinematic eddy viscosity that is given by  
Eq. (2), the Jones-Launder turbulence model 
comprises the following equations for steady 
incompressible flow. The continuity equation,

0=⋅∇ V                       (3)

the Boussinesq-based Reynolds-averaged-Navier-
Stokes (RANS) equations,

 )]()(2[ˆ)( VSVV




tp ννρ +⋅∇+∇−=∇⋅                 (4)

the Boussinesq-based turbulent-energy-transport 
equation,
 ])[()()(2 kk ktt ∇+⋅∇+−⋅=∇⋅ σννεν VSVSV









  (5)

and a turbulent-dissipation-transport equation 
obtained by analogy with Eq. (5)
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 ])[()()(2

2
21 εσννεενε εεε ∇+⋅∇+−⋅=∇⋅ tt k

C
k

C VSVSV








            (6)

The commonly used closure coefficients for this model are

    1 20.09, 1.44, 1.92, 1.0, 1.3kC C Cµ ε ε εσ σ= = = = =            (7)

In this form, the Jones-Launder k-ɛ turbulence model does not exhibit the proper behavior near a solid 
wall. Near a no-slip boundary the turbulent velocity fluctuations and turbulent transport are suppressed by 
the proximity of the solid surface. Accurately modeling this suppression is critical to obtaining accurate 
predictions for the wall shear stress and heat transfer.

In the attempt to provide realistic results near a wall, the Jones-Launder k-ɛ model is often implemented 
with the incorporation of what are called wall damping functions. In a general form, these wall damping 
functions are added to Eq. (2), Eq. (6), and the definition of ɛ,

      
 εν µµ

~2kfCt =               (8)

   
 ]~)[(

~
)()(

~
2~ 2

21 21 εσννεενε εεε ∇+⋅∇++−⋅=∇⋅ tt E
k

fC
k

fC VSVSV








           (9)

      oεεε += ~
            (10)

A variety of k-ɛ turbulence models have been proposed, which differ only in the form of the wall damping 
functions µf , 1f , 2f , E , and ɛ0. To complete any k-ɛ model of this form, the wall damping functions are 
specified as prescribed functions of v, ,V  k, ,~ε  and the normal coordinate y, measured outward from the 
wall. These wall damping functions are simply empirical corrections that are added to force the model to 
agree more closely with experimental data.

For steady, incompressible, 2-D flow in Cartesian coordinates, the k-ɛ turbulence model with wall damping 
functions is specified by

      εν µµ
~2kfCt =             (11)

          0=
∂

∂
+
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If y is the normal coordinate measured outward from a smooth wall, then the traditional no-slip wall 
boundary conditions for xV  and yV  are

     0)0,(,0)0,( == xVxV yx             (17)
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Likewise, the obvious no-slip wall boundary condition for k at a smooth wall is

      0)0,( =xk              (18)

The remaining wall boundary condition is assumed to be model dependent and it is the topic of the present 
paper.

The mean velocity and turbulent fluctuations vanish at all points on a smooth wall. Hence, near a smooth 
wall, changes in the mean velocity and turbulence variables with respect to x are small compared to changes 
with respect to y, and the near-wall formulation reduces to

         
0≅

∂
∂

y
Vy              (19)
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Integrating Eq. (19) and applying Eq. (17) yields

      0≅yV              (24)

Using Eq. (24) in Eq. (21) yields

     
0

ˆ
≅

∂
∂

y
p

  or  )(ˆˆ xpp ≅             (25)

Using Eqs. (24) and (25) in Eq. (20) gives

     

ˆ1( ) x
t

V dp
y y dx

ν ν
ρ

 ∂ ∂
+ ≅ ∂ ∂ 

             (26)

Because the right-hand side of Eq. (26) is only a function of x, integrating Eq. (26) from the wall to some 
point y that is still near the wall results in

     

y
xd
pd

y
V

y

y

x
t

ˆ1)(
0 ρ

νν ≅





∂
∂+

=
           (27)

Because the turbulent eddy viscosity is zero at a smooth wall, the left-hand side of Eq. (27) evaluated at the 
wall can be written in terms of either the wall shear stress or the friction velocity,

         
)()()0,( 2 xuxx

y
V wx

τρ
τν ≡=

∂
∂

           (28)

After using Eq. (28) in Eq. (27), the near-wall approximation for the Boussinesq-RANS equations becomes

    0,
ˆ1)( 2 ≅+≅

∂
∂+ y

x
t Vy

xd
pdu

y
V

ρ
νν τ                 (29)

Similarly, after applying Eq. (24) to Eqs. (22) and (23), the near-wall approximations for the k- and 
ɛ-transport equations become
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The near-wall formulation given by Eqs. (29)-(31) is commonly called the parallel-flow approximation. This 
simplification was obtained using only the approximation that changes in the mean velocity and turbulence 
variables with respect to x are negligible compared to changes with respect to y. This is approximately true 
for any flow in the region very close to a solid surface. Furthermore, the simplifications used in obtaining 
Eqs. (29)-(31) hold exactly for fully developed flow in channels.

For attached flows, it is convenient to nondimensionalize the differential equations in Eqs. (29)-(31) using 
the traditional wall-scaled dimensionless variables as a similarity transformation

   
xd
pd
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xp
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yxy

xu
yxy

xu
yxkyk
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yxVyuyxuyxy
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)(
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νενεενε
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+++++
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                 (32)

Although it is not standard convention, here we shall denote the ratio of the turbulent eddy viscosity to the 
molecular viscosity as +ν .  Thus, from Eq. (11)

   
+

+
+ ===≡

εενενν
νν µµ

τ

τ
µµµµ

2

4

222

~
)(

~
kfC

u
ukfCkfCt

         (33)

Applying Eqs. (32) and (33) to Eqs. (25) and (29)-(31) the near-wall formulation is

       
2 12 1

0, ,

(1 )

(1 )

dp du p y kC f
dy dy

d dk du
dy dy dy

d d duC f C f E
dy dy k k dyε ε

µ µν ε

ν σ ε ε ν

ε ε εν σ ν

+ + + +

+ + + +

+ ++ +
+ + +

+ + +
+ +

+ ++ + +

≅ ≅ =

   
+ ≅ + −   

   

   
+ ≅ − −  

   

                (34)

where 62
τν uEE ≡+ . To complete the formulation, the damping functions µf , 1f , 2f , +E , +oε , and six 

boundary conditions must be specified for this coupled sixth-order system.

Although several variations for the k-ɛ wall damping functions have been proposed, none have been 
completely successful. In the present paper we shall examine two of the commonly used models. The 
first k-ɛ turbulence model to be considered is that developed by Lam and Bremhorst [3]. This is typical of 
models that use 0== ++

oE ε . The second k-ɛ model to be considered here is that developed by Launder and 
Sharma [4]. This model is typical of those that use prescribed functions for E+ and +oε , which are nonzero.

The Lam-Bremhorst k-ɛ Model

For incompressible flow, the Lam-Bremhorst k-ɛ turbulence model [3] uses the wall damping functions 
defined by
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1 2

2 2 4 2 1 2 2 1 2
1 2

4

2

3 2
1 2

( ), ,

[1 exp( 0.0165 )] (1 20.5 ),

1 (0.05 ) , 1 exp( ), 0, 0,
0.09, 1.44, 1.92, 1.0, 1.3

t y

y t

t o

k

k k u k k y k u u yR R k y
u

f R R

f f f R E
C C C

τ τ τ

τ

µ

µ

µ ε ε ε

ν ε ν ε ε ν ν

ε

σ σ

+
+ +

+

++

≡ = = ≡ = =

= − − +

= + = − − = =

= = = = =

                (35)

Hence, we see that for this k-ɛ model the wall damping functions can be written in terms of only the 
traditional wall-scaled dimensionless variables.

There has not been universal agreement regarding appropriate wall boundary conditions for the Lam-
Bremhorst k-ɛ model. As a specific example of how such boundary conditions affect the flow, we shall 
consider the case of fully developed flow in a 2-D channel of half width l. The parallel-flow simplifica-
tions used in obtaining Eq. (34) hold exactly for this fully developed flow. Because y was defined to be the 
normal coordinate measured outward from the solid wall, the symmetry boundary conditions at the channel 
centerline require

    
0, 0, 0

y l y l y l

du dk d
dy dy dy

ε
+ + ++ + +

+ ++

+ + +
= = =

= = =           (36)

where ντ lul ≡+ . The first of the four differential equations in Eq. (34) can be integrated analytically and the 
first of the three boundary conditions in Eq. (36) can be used with the second differential equation in Eq. 
(34) to evaluate p+, which gives

      ++ −= lp 1                    (37)

Two of the three boundary conditions required at the wall are the obvious no-slip conditions in Eqs. (17) and 
(18). Hence, using these two boundary conditions and the two remaining symmetry boundary conditions 
from Eq. (36), Eqs. (34)-(37) reduce to the incomplete one-dimensional fifth-order formulation.

   
2 1

2

22
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d dk du
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dy dy k k dy

R k R k y

f R R

f f f

ε ε
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= =
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+ = −   

   

   
+ = −   

   
≡ ≡

= − − +

= + =

1 2

2( )1 exp ,
0.09, 1.44, 1.92, 1.0, 1.3,

( ) ( ) ( ) ( )0 0, 0 0, 0, 0

t

k

' '

R
C C C

u k k l l
µ ε ε εσ σ

ε+ ++ + ++

− −

= = = = =

= = = =

                      (38)

where the '  indicates a derivative with respect to y+.

One additional boundary condition is needed to complete the formulation given by Eq. (38). In their original 
publication, Lam and Bremhorst [3] give the remaining boundary condition for Eq. (38) as

    )0,()0,( 2

2
x

y
kx

∂
∂=νε  or )0()0( ''k ++ =ε            (39)
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where the " indicates a second derivative with respect to y+. Although this boundary condition is commonly 
accepted in the literature as being the appropriate smooth-wall boundary condition for Eq. (38), it is in fact 
mathe matically incorrect. There are an infinite number of solutions to Eq. (38), which also satisfy Eq. (39).

To see why Eq. (39) is not a viable boundary condition for Eq. (38), consider Eq. (38) in the limit as y+ 
approaches zero. In this limit, both Rt and Ry go to zero and the wall damping functions and eddy viscosity 
near a smooth wall reduce to

         

2 2
2 2

3 3 4

1 23 6 3 6 2

( )20.5 0.0165 ( )0, , 20.5 0.0165 ,

( )0.051 ,
( ) ( )20.5 0.0165

yy f C k y
k

k kf f
y

µ µ
ε ν

ε ε

+ +
++ + +

+

+ +

+ + +

→ = =

= + =
                (40)

Using these limiting relations in the differential equations from Eq. (38) produces the near-wall system of 
equations, which applies in the limit as y+ approaches zero,

   

1
3 32 2

2 2 2 4 2 4

( )0.05
0, 1, ,

( ) ( )20.5 0.0165
C C kdu d k dy

dy dy dy y
εµεε
ε

++ ++
++

+ + + + +

−
→ = = =               (41)

From the development of Eq. (41) it can be seen that Eq. (38) satisfies Eq. (39), independent of the fifth 
boundary condition. Hence, Eq. (39) does not provide the additional information required to obtain a unique 
solution to the indeterminate system in Eq. (38).

As a further demonstration of why Eq. (39) is not a viable boundary condition for completing the 
indeterminate system in Eq. (38), consider the similar system

      

2 22 2
4 6 2

2 2

ˆ ˆˆ ˆ ˆˆ1 , , ,

ˆ ˆ( ) ( ) ( ) ˆ ( )ˆ 0 0, 0 0, 1 0, 1 0

du d k du d duy y y y
dy dy dy dy dy

u k k

εε

ε

   
= − = − = −   

   
′ ′= = = =

          (42)

This indeterminate fifth-order system of differential equations with only four boundary conditions is 
mathematically similar to Eq. (38), yet it is simple enough to permit obtaining a closed-form solution by 
direct integration. The general solution to Eq. (42) is

  

2 2 3 6 7 8 10
4 5

1 2 3

4 5 6 8

4 5

13 21 31ˆˆ , ,
2 2 6 360 420 1680 5040

ˆ
12 10 30 56

y C y C y y y y yu C y k C C y

y y y yC C yε

= + − = + + + − + − +

= + − + − +
         (43)

After applying the four boundary conditions given in Eq. (42) to eliminate four of the five arbitrary constants, 
the solution in Eq. (43) yields

   

2 2 3 6 7 8 10

4

4 5 6 8

4

2 338 92 182 252 93ˆˆ , ,
2 2 5040

92 70 84 28 15ˆ
840

y y y y y y y y yu y k C

y y y y yCε

− − − + − +
= − = +

− − + − +
= +

         (44)

As should be expected, there are an infinite number of solutions to any indeterminate fifth-order system of 
differential equations with only four boundary conditions, such as that specified in either Eq. (38) or Eq. 
(42). However, if the mathematical logic presented by Lam and Bremhorst [3] is correct, then we should be 
able to reduce Eq. (44) to a single unique solution by simply applying a boundary condition obtained from 
the second differential equation in Eq. (42) evaluated at y=0. If we accept this logic, then our final boundary 
condition for Eq. (42) is
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         )0(ˆ)0(ˆ ''k=ε                     (45)

However, the reader may not be surprised to learn that applying Eq. (45) to either Eq. (43) or Eq. (44) yields 
only the trivial result C4 = C4. Hence, there are an infinite number of solutions to Eq. (42) that also satisfy 
Eq. (45).

From the discussion presented here, it should be clear that, in developing Eq. (39) as a boundary condition 
for Eq. (38), Lam and Bremhorst [3] used mathematical logic that is seriously flawed. Equation (39) is 
certainly a valid near-wall asymptote for the k-transport equation in Eq. (38). Thus, Eq. (39) can be used 
as an alternative to the k-transport equation for y+ approaching zero, provided that it is combined with five 
appropriate boundary conditions. However, Eq. (39) cannot be used in lieu of one of the five boundary 
conditions. If valid boundary conditions could be obtained directly from the differential equations to which 
they apply, separate boundary conditions would not be needed to isolate a unique solution from a general 
solution.

If Eq. (39) is not a mathematically viable boundary condition for Eq. (38), it may be fair for a reader 
to ask, “How is it possible that numerical solutions to Eq. (38) have been obtained using Eq. (39) as a 
boundary condition?” To answer this question, we must remember that traditional CFD algorithms provide 
no information regarding the uniqueness of any solutions found. If multiple solutions exist, the numerical 
algorithm may converge on one of these solutions, but we have no assurance that the solution satisfies the 
physically correct wall boundary conditions, unless those boundary conditions have all been numerically 
enforced. It is always the user’s responsibility to specify the boundary conditions appropriately, so that any 
solution found will be unique and physically correct.

In a review of early turbulence models, Patel, Rodi, and Scheuerer [5] point out that using Eq. (39) as a 
boundary condition for Eq. (38) “is not very convenient since it involves parts of the solution of the system 
of coupled differential equations.” Although Patel, Rodi, and Scheuerer [5] did not state that the boundary 
condition proposed by Lam and Bremhorst [3] is incorrect, they did suggest a “more convenient boundary 
condition,”

     
0)0,( =

∂
∂ x

y
ε  or 0)0( =+'ε                    (46)

which is also incorrect.

Durbin [6] was the first to point out that, as boundary conditions for Eq. (38), both Eq. (39) and Eq. (46) are 
incorrect. Durbin [6] presented the correct smooth-wall boundary conditions for Eq. (38), which are

             
0)0,()0,()0,( =

∂
∂== x

y
kxkxVx  or 0)0()0()0( === +++ 'kku          (47)

With reference to the wall boundary conditions specified by Eqs. (39) and (46), Durbin [6] states, “These 
conditions must violate the energy balance, and do not ensure satisfaction of conditions (47).” With 
reference to the k conditions specified in Eq. (47), in a later publication Durbin [7] states, “These two 
conditions on k suffice to determine the solution for the coupled system of equations; there is no need to 
impose conditions of ɛ at the wall - indeed, it would be incorrect to do so.”

To demonstrate why the smooth-wall boundary conditions given by Durbin [6] are correct, consider the 
impli cations of the no-slip boundary condition on the turbulent velocity fluctuations. At a smooth surface, 
both the mean and fluctuating velocity components must vanish. The definitions of k and ɛ are given by Eq. 
(1). Clearly, the no-slip boundary condition applied to Eq. (1) requires Eq. (18). However, because the no-
slip boundary condition places no restriction on the derivative of xV~  with respect to y, and ɛ depends only 
on the Jacobian of V~ , physics imposes no boundary condition on ɛ. The second wall boundary condition 
required for the coupled fourth-order system of k-ɛ transport equations is obtained by taking the gradient of 
k, which from the definition in Eq. (1) gives
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       VVVVk ~~~~ 2
2
12

2
1 )( ∇=∇=∇≡∇                   (48)

Because the no-slip boundary condition requires 0~=V  at the wall, Eq. (48) requires

     0)0,( =∇ xk  or 0)0( =+'k                    (49)

Hence, we see that a no-slip wall imposes two boundary conditions on k and none on ɛ. This is sufficient to 
determine a unique solution to the coupled fourth-order system of k-ɛ transport equations. There is no need 
to impose a wall boundary condition on ɛ, and it is incorrect to do so. The value of ɛ at a smooth wall is that 
required to satisfy both Eqs. (18) and (49), as was originally pointed out by Durbin [6].

At this point it may be useful to return to our consideration of Eq. (42), which has a closed-form solution 
and is mathematically similar to the fifth-order system in Eq. (38). The boundary condition for Eq. (42) that 
is analogous to Eq. (49) is 0)0(ˆ =′k . It is easily shown that applying this boundary condition to the solution 
of Eq. (42) that is given in Eq. (44) yields 25201694 =C , and the complete unique solution is

   

2 2 3 6 7 8 10

4 5 6 8

169 92 182 252 93ˆˆ , ,
2 5040

169 276 210 252 84 45ˆ
2520

y y y y y y yu y k

y y y y yε

− − + − +
= − =

− − + − +
=

 

        (50)

which results in 2520169)0(ˆ =ε  and ˆ ( )0 23 210ε ′ = − . On the other hand, the boundary condition for Eq. (42) 
that is analogous to Eq. (46) is 0)0(ˆ =′ε . Applying this boundary condition to the solution of Eq. (42) that is 
given in Eq. (44) yields the somewhat more troubling result 23 210 0− = , which may inspire some concern 
with regard to using Eq. (46) as a boundary condition for Eq. (38).

Examination of the incomplete fifth-order system given by Eq. (42) has revealed that using )0(ˆ)0(ˆ ''k=ε  
as the fifth boundary condition results in an infinite number of solutions. On the other hand, Eq. (42) has 
no solution if 0)0(ˆ =′ε  is used as the fifth boundary condition. It can be shown that the incomplete fifth-
order system in Eq. (38) exhibits very similar behavior. However, solutions to Eq. (38) must be obtained 
numerically.

Because fully developed flow is one dimensional, a solution to Eq. (38) combined with Eq. (49) can be 
obtained by direct numerical integration. This permits the use of efficient high-order numerical methods 
such as the fourth-order Runge-Kutta algorithm. Because such solutions can be obtained quickly on very 
fine grids, fully developed channel flow provides an excellent benchmark for testing more computationally 
intensive CFD algorithms.

To facilitate direct numerical integration, the two second-order equations in Eq. (38) can be converted to 
four first-order equations by using the change of variables

    
(1 ) , (1 )k

dk dq
dy dyε

εν σ θ ν σ
+ +

++ + +
+ +

≡ − + ≡ − +           (51)

Combining Eq. (38) with Eq. (49), applying the change of variables given in Eq. (51), and eliminating +ν  
by direct substitution provides the complete one-dimensional fifth-order formulation
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t

t
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u k q
q l l

µ

µ µ µ µ

θ

++ +

+ +++

= +

= = + = − −
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          (52)

It should be noted that the new variable q+ is a dimensionless form of the total diffusive flux of turbulent 
kinetic energy k, which includes both molecular and turbulent diffusion. Similarly, θ+ is a dimensionless 
diffusive flux for ɛ. This brings to light another physical interpretation of the boundary condition given 
in Eq. (49), which led directly to the equivalent boundary condition in Eq. (52), i.e., 0)0( =+q . With this 
interpretation, Eq. (49) can be viewed as a mathematical statement of the simple fact that turbulent kinetic 
energy cannot be diffused through a solid wall. The formulation for fully developed flow that is given by 
Eq. (52) requires that +q  vanish at the wall and at the centerline. Thus, all of the turbulent kinetic energy 
that is generated within this steady flow must also be dissipated within the flow. If a boundary condition 
obtained from either Eq. (39) or Eq. (46) is used in place of that obtained from Eq. (49), this energy balance 
is not enforced. This is the origin of Durbin’s statement that, “These conditions must violate the energy 
balance,” [6].

A numerical solution to the five first-order differential equations given in Eq. (52) can be obtained using 
fourth-order Runge-Kutta integration combined with an appropriate numerical root-finding method. Because 
only three of the five boundary conditions are given at y+ = 0, the solution for )0(+ε  and )0(+θ  must be obtained 
from the differential equations. The process is started with initial estimates for )0(+ε  and )0(+θ . From these 
initial estimates, fourth-order Runge-Kutta integration can be used to obtain )( ++ lq  and )( ++ lθ . The initial 
estimates are then refined using an appropriate numerical method until the solution is found, which corre-
sponds to the correct centerline values 0)( =++ lq  and 0)( =++ lθ .

A few words of caution may be in order here. Some of the terms in Eq. (52) are numerically indeterminate if 
0=+k  and/or 0=+ε . Notice that a division by zero occurs in the definition of Rt for 0=+ε . Thus, depending on  

the compiler, conditional relations may be required to enforce 12 =µf  and 12 =f  for 0→+ε . For most compilers, 
Eq. (52) is numerically indeterminate for 0=+k . In this limit, both Rt and Ry go to zero and the eddy viscosity 
and wall damping functions reduce to

    

2
2 2 3

2

3 2
2 2

1 2 4

( )0, 20.5 0.0165 , ,

( ) ( )0.05 0( )20.5 0.0165
( ) ( )8 20.5 0.0165

k C k y f k
k

yf f k y

µ

µ

εν

εε

+
+ + ++ +

+

+ +
+ + +

→ = =

= +
                 (53)
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Hence, for the limit 0→+k , the formulation given in Eq. (52) should be conditionally replaced with its near-
wall asymptote

    

1 2

2

2 3

2 2

3 2
2 2

2 4

10,
1

( )20.5 0.0165 ,

( ) ( )0.05 0( )20.5 0.0165
( ) ( )8 20.5 0.0165
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dy
d
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µ ε
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ν

εε

++ +
+ +

+ +

+ +

+ +

+
++ +

+

++

+ +

+
++

+

++ +

+ +
+ +

−
→ = ≡

+

≡ −
+

= −

≡ −
+

= −

=

≡ +

           (54)

To demonstrate that Eq. (39) is not a valid boundary condition for completing the formulation given in Eq. 
(38), the results shown in Figure 1 were obtained from Eq. (52) using randomly selected wall boundary 
conditions. The no-slip wall boundary conditions were used for both u+ and k+, but the wall boundary 
conditions for ,+q  ,+ε  and ,+θ  as well as the wall-scaled dimensionless half width l+ were generated as listed 
in Figure 1 using the “rand” function, which generates a random number between 0.0 and 1.0. From the 
results presented in Figure 1, it can be concluded that Eq. (39) is enforced directly by Eq. (38), completely 
independent of the boundary conditions.

To demonstrate that Eq. (46) is not a valid boundary condition for completing the formulation given in Eq. 
(38), the results shown in Figure 2 were obtained from Eq. (52) using the no-slip wall boundary conditions 
for ,+u  ,+k  and ,+q  with the wall boundary conditions for +θ  obtained from Eq. (46). For several values 
of ,+l  the computed value for +q  at the centerline is plotted as a function of the remaining wall boundary 
condition )0(+ε . Valid solutions to Eq. (38) could only correspond to those points where these curves intersect 
the axis 0)( =++ lq . From the results presented in Figure 2, it can be seen that there is only one solution to 
Eq. (38) that satisfies Eq. (46) and the no-slip wall boundary conditions. That is the trivial laminar solution

    0,)2(2 ====−= ++++++++ θεqklyyu           (55)

There is no turbulent flow solution to Eq. (38) that satisfies Eq. (46) and the no-slip wall boundary conditions.

Examination of the numerical results shown in Figure 1 and Figure 2 reveals that Eq. (38) exhibits behavior 
very similar to that demonstrated analytically for the hypothetical fifth-order system given by Eq. (42). 
Using )0()0( ''k ++ =ε  as the fifth boundary condition for Eq. (38) results in an infinite number of solutions. 
On the other hand, Eq. (38) has no valid turbulent flow solution if 0)0( =+'ε  is used as the fifth boundary 
condition. This underscores the critical importance of always using the correct no-slip boundary conditions 

0)0()0()0( === +++ 'kku .

The Launder-Sharma k-ɛ Model
For incompressible flow, the wall damping functions that are used in Eqs. (8)-(10) are defined for the 
Launder-Sharma k-ɛ turbulence model [4] as 

    
1 2

2 2
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                         (56)
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Figure 2: Solutions to Eq. (52) with no slip and no dissipation gradient at the wall.
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Figure 1: Solutions to Eq. (52) with randomly selected wall boundary conditions.
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It may be worth noting that Launder and Sharma [4] originally defined the wall damping function ɛ0 in a 
slightly different but equivalent form,
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22 
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y
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o
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Following what was done with the Lam-Bremhorst model, the Launder-Sharma wall damping functions 
can be written in terms of the wall-scaled dimensionless variables that are defined in Eqs. (32) and (33). The 
result applied to Eq. (34) yields the near-wall formulation for the Launder-Sharma k-ɛ model
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                  (57)

From the first two differential equations in Eq. (57) and the specified relation for +ν , it is easily shown that 
the last term on the right-hand side of the ε-transport equation can be evaluated from
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The wall boundary conditions for this model as specified originally by Launder and Sharma [4] are

    0)0,(~)0,()0,( === xxkxVx ε  or 0)0()0()0( === +++ εku           (59)

To examine the near-wall behavior of the Launder-Sharma k-ɛ model, consider the Taylor-series expansions
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If we impose the wall boundary conditions 0)0()0( == ++ εk  and leave )0('k +  as an unknown constant, the 
near-wall expansions for the damping functions and eddy viscosity are
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Using these expansions in Eq. (57), the near-wall expansion for the k-transport equation yields
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which is singular at the wall. Notice that enforcing 0)0( =+ε  does not enforce 0)0( =+'k . On the other hand, if 
we apply the wall boundary conditions 0)0()0( == ++ 'kk  and treat )0(+ε  as an unknown, we obtain
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and the near-wall expansion for the k-transport equation becomes
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which requires 0)0( =+ε  and )0(3)0( ''''k ++ = ε . Hence, we see that referring to the relation 0)0( =+ε  as a boundary 
condition for the Launder-Sharma k-ɛ model is a misnomer. If the correct no-slip boundary conditions 
specified in Eq. (47) are applied with the Launder-Sharma k-ɛ model, then 0)0( =+ε  follows directly from the 
k-transport equation. In any case, the correct no-slip boundary condition 0)0( =+'k  should be enforced with 
the Launder-Sharma k-ɛ model, because the k-transport equation is singular at the wall for nonzero values 
of )0('k + . With the correct no-slip boundary conditions enforced, the near-wall expansions for the Launder-
Sharma damping functions and eddy viscosity are
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From the development of Eq. (38), fully developed flow in a 2-D channel of half width l requires ++ −= lp 1  
and the Launder-Sharma model combined with the boundary conditions given in Eqs. (36) and (47) yields
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Using the change of variables defined in Eq. (51) combined with Eq. (58) yields the complete one-
dimensional fifth-order formulation
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For the limit 0→+y , the numerically indeterminate terms in Eq. (66) should be conditionally replaced with 
their near-wall asymptotes
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Note that in the limit 0=+y , the differential equation for +q  reduces to the algebraic equation 0)0( =+ε . 
Moreover, this differential equation is satisfied for any value of )0('q+ . Thus, )0('q+  is an unknown constant 
that can be varied along with )0(+θ  to enforce the two centerline boundary conditions. If the no-slip boundary 
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condition 0)0( =+q  is not enforced, the differential 
formulation is mathematically indeterminate.

It should be emphasized that, because physics 
imposes two wall boundary conditions on k and 
none on ɛ, the value of ɛ throughout the flow field, 
including its value at the wall, must be determined 
exclusively from the differential transport equations 
while enforcing the two wall boundary conditions 
on k. Because the relation 0)0( =+ε  follows directly 
from the differential equations as shown in Eq. (63), 
this is certainly a valid relation that can be used 
to replace a differential transport equation at the 
wall, provided that it is combined with a complete 
set of appropriate boundary conditions. However, 
it cannot be used in lieu of one of the required 
boundary conditions, as was proposed originally by 
Launder and Sharma [4] in their presentation of this 
classical turbulence model.

Numerical Results from CFD Algorithms
Because the zero-gradient boundary condition for 
k in Eq. (47) is not explicitly enforced in many 
commonly implemented k-ɛ turbulence models, 
solutions obtained from these models are not unique. 
To demonstrate this fact, the RANS formulations for 
fully developed channel flow presented in Eqs. (38) 
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Figure 3: Grid resolution for the mean velocity predicted from the Launder-Sharma k-ɛ model.

and (65) were solved numerically using a second-
order finite difference algorithm with successive 
underrelaxation. Solutions were obtained on the 
domain extending from the wall to the channel 
centerline, and grid points were clustered near the 
wall using logarithmic clustering. To ensure that 
all results were fully converged, the successive 
underrelaxation was allowed to continue until 
the observed changes were reduced to within the 
double-precision machine accuracy.

To ensure that all results were grid resolved, the grids 
were uniformly refined until no significant changes 
were observed with additional grid refinement. For 
a given axial pressure gradient, the Launder-Sharma 
model required a somewhat finer grid than was 
required for the Lam-Bremhorst model. Results of 
an example grid-resolution study for the Launder-
Sharma model are shown in Figure 3, Figure 4 and 
Figure 5. All results shown in these figures were 
obtained using the fixed axial pressure gradient, 
which yields a value of +y  at the centerline equal 
to 300. For the grid refinements shown in Figure 
3, Figure 4 and Figure 5, the four grids produced 
channel Reynolds numbers (based on the channel 
width and mean velocity) that were equal to 10,009, 
10,653, 10,832, and 10,878, respectively. An 
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additional refinement of the grid to 401 nodes, which is not shown in Figure 3, produced a channel Reynolds 
number of 10,889. From these and other similar results, it was concluded that for Reynolds numbers on 
the order of 10,000, the 201-node grid used for Figure 3, Figure 4 and Figure 5 produced adequate grid 
resolution with both the Lam-Bremhorst and Launder-Sharma turbulence models.

To demonstrate that solutions obtained from commonly implemented k-ɛ turbulence models are not unique, 
the second-order successive underrelaxation algorithm was implemented using a slight variant of the 
wall boundary conditions specified in Eq. (47), which allows the user to specify an arbitrary value for the 
gradient of k at the wall. Figure 6 and Figure 7 show converged and grid-resolved results obtained from this 
algorithm using three different gradient boundary conditions for k at the wall: 0.0)0( =+'k , 1.0)0( =+'k , and 

0.1)0( =+'k .

To demonstrate that traditional implementations of these turbulence models do not necessarily converge 
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Figure 4: Grid resolution for the turbulent energy predicted from the Launder-Sharma k-ɛ model.
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Figure 5: Grid resolution for the turbulent dissipation predicted from the Launder-Sharma k-ɛ model.
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to the solution that yields 0)0( =+'k , Figure 6 and 
Figure 7 also include results obtained from the same 
algorithm, turbulence models, and grid, but with 
a traditional implementation of the wall boundary 
conditions, which uses only 0)0( =+u  and 0)0( =+k  
together with an asymptotic relation obtained from 
the differential equations, i.e., )0()0( ''k ++ =ε  for the 
Lam-Bremhorst model and 0)0( =+ε  for the Launder-
Sharma model. For additional comparison, Figure 
6 and Figure 7 also show results from the general-
purpose finite-volume CFD solver FLUENT [8], 
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Figure 6: Effects of wall boundary conditions on turbulent energy predicted from the Lam-Bremhorst model.
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Figure 7: Effects of wall boundary conditions on turbulent energy predicted from the Launder-Sharma model.

which were obtained using the same turbulence 
models and grid with only the traditional wall 
boundary conditions implemented.

The results shown in Figure 6 and Figure 7 clearly 
demonstrate that when the natural boundary 
condition 0)0( =+'k  is not enforced, solutions obtained 
from commonly implemented k-ɛ turbulence 
models are not unique. When the boundary 
condition 0)0( =+'k  is omitted, solutions obtained 
from the resulting indeterminate formulation are 
implementation dependent. Notice from Figure 6 
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that for the Lam-Bremhorst model with traditional 
implementa tion of the wall boundary conditions, the 
finite-difference algorithm converged to a different 
solution from that obtained using the finite-volume 
algorithm with the same indeterminate boundary 
conditions. Neither of these solutions agrees with 
that obtained from the finite-difference algorithm 
with the boundary condition 0)0( =+'k  enforced. 
Similarly, we see from Figure 7 that these finite-
difference and finite-volume implementations of 
the Launder-Sharma model converge to different 
solutions with traditional implementa tions of 
the wall boundary conditions. However, for the 
particular implementation used to obtain the 
results shown in Figure 7, the indeterminate finite-
difference algorithm converged to a solution that is 
very close to that obtained when the complete set 
of smooth-wall boundary conditions was enforced. 
This should not be viewed as an endorsement for 
implementing the Launder-Sharma turbulence 
model with mathematically incomplete boundary 
conditions.

From the near-wall expansions of the Launder-Shar-
ma model given in Eqs. (62) and (63), it was shown 
that enforcing 0)0( =′+k  requires 0)0( =+ε , whereas en-
forcing 0)0( =+ε  does not require 0)0( =′+k . This can 
also be demonstrated numerically by examining the 
near-wall behavior of ɛ obtained from numerical 
solutions using different gradient boundary condi-
tions for k at the wall. Such results are shown in 
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Figure 8: Effects of wall boundary conditions on near-wall dissipation for the Launder-Sharma model.

Figure 8, which were obtained from converged and 
grid-resolved solutions for the same channel flow 
that was used to obtain the results shown in Figure 
7. Notice that, although )0(′+k  does affect the near-
wall behavior of ,+ε  all of these solutions satisfy 

0)0( =+ε . As can be seen from Eqs. (62), (63), and 
the discussion here, only the solution corresponding 
to 0)0( =′+k  also satisfies the physically correct no-
slip condition at the smooth wall.

Because the wall damping functions for the Lam-
Bremhorst model decay rapidly with increasing 
y+, the wall boundary condition 0)0( =+'k  has little 
impact on the velocity profiles predicted from this 
turbulence model. On the other hand, the wall 
damping functions for the Launder-Sharma model 
decay slower and have a more significant effect 
on the predicted mean velocity farther from the 
wall. This can be seen in Figure 9, which displays 
the velocity profiles for the same solutions that 
were used to obtain the turbulent energy profiles 
displayed in Figure 7. It may be worth reiterating 
that all of the solutions shown in Figure 9 satisfy 
the traditional wall boundary conditions 0)0( =+u  
and 0)0( =+k  together with the asymptotic relation 
obtained from the differential equations, 0)0( =+ε .

Anyone who has taken time to compare results 
obtained from different CFD algorithms and 
different k-ɛ turbulence models will likely have 
noticed that there is often a greater difference 
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between the results obtained from two different 
implementations of the same turbulence model than 
there is between the results obtained from the same 
implementation of two different turbulence models 
[9]. The results shown in Figure 9 may shed some 
light on the reason for this phenomenon. We should 
not be too surprised to learn that results obtained 
from commonly used k-ɛ turbulence models are 
implementation dependent, if we recognize that 
these models are short one boundary condition, and 
thus are mathematically indeterminate.

Because the CFD community has not traditionally 
implemented two wall boundary conditions on k and 
none on ɛ, implementation of the correct smooth-
wall boundary conditions first proposed by Durbin 
[6] has been less than enthusiastically embraced. The 
actual implementation of these boundary conditions 
is dependent on the numerical method being used to 
solve the system of differential equations. However, 
this implementation should not be difficult using 
well-known methods in either finite-difference 
or finite-volume algorithms. For example, results 
presented in this section were obtained from a 
finite-difference algorithm. To implement the 
no-slip wall boundary conditions, the k-transport 
equation at any wall node was replaced with the 
boundary condition 0)0( =k . At the first node off the 
wall, the k-transport equation was replaced with a 
second-order finite-difference approximation for 
the boundary condition 0)0( =′+k . Because there is 
no wall boundary condition on ɛ, the ɛ-transport 
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Figure 9: Effects of wall boundary conditions on the mean velocity predicted from the Launder-Sharma model.

equation at any wall node was replaced with the 
asymptotic relation obtained from the differential 
equations, i.e., )0()0( ''k ++ =ε  for the Lam-Bremhorst 
model and 0)0( =+ε  for the Launder-Sharma model. 
The implementation of the ɛ-transport equation is 
identical to that of the traditional formulation. The 
error in the traditional formulation is not that the 
transport equation for ɛ is incorrectly implemented. 
Rather, the error is in assuming that the near-wall 
asymptote obtained from the differential equations 
can be used to replace the final boundary condition 
required at the wall.

As scientists and engineers, we do not have the 
luxury of choosing boundary conditions for ease of 
numerical implementation. Boundary conditions are 
dictated by physics. It is our obligation to understand 
and implement them correctly if we hope to achieve 
mathematical formulations that correctly model 
physics. The fundamental mathematical error of 
deriving a so called boundary condition directly from 
the differential equations is not unique to the classical 
k-ɛ turbulence models that have been considered 
here. It is also an important concern for many other 
turbulence models developed more recently [10-13].

Application to k-ω Models
The k-ω turbulence models that are commonly used 
for CFD are built on exactly the same dissipation-
based eddy-viscosity model that is given in Eq. 
(2), where k and ɛ are defined by Eq. (1). These 
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commonly used k-ω turbulence models are based on applying a simple change of variables to Eq. (2), i.e.,

                                                                         ( )  / C kµω ε≡                                                                 (68)

This change of variables applied to Eq. (2) yields an algebraic equation for the kinematic eddy viscosity in 
terms of only the turbulent kinetic energy per unit mass, k, and the turbulent energy-dissipation frequency, ω,

           = /tv k ω              (69)

In addition to this algebraic equation for the kinematic eddy viscosity, the k-ω turbulence model originally 
proposed by Kolmogorov [14] has been refined to comprise the following equations for steady incompressible 
flow. The continuity equation combined with the Boussinesq-RANS equations,

      0=⋅∇ V              (70)

     ˆ( ) [ ( )]V V 2( )S Vtp ρ ν ν⋅∇ = − ∇ + ∇ ⋅ +




           (71)

the Boussinesq-based turbulent-energy-transport equation obtained by applying the change of variables 
defined in Eq. (68) to Eq. (5),

                            ( ) ( ) ( ) = 2 /t t kk v C k v v kµ ω σ⋅∇ ⋅ − + ∇ ⋅ + ∇  
 

 

V S V S V                                     (72)

and a dissipation-frequency-transport equation obtained by analogy with Eq. (72),

              
 ])[()()(2 2

21 ωσννωωνω ωωω ∇+⋅∇+−⋅=∇⋅ tt C
k

C VSVSV








          (73)

The closure coefficients differ slightly from one version of the model to another and have changed as the model  
has evolved over the past six decades. In the original k-ω model, Kolmogorov [14] assumed 1ωC  = 0 and he did 
not include the molecular diffusion term. The closure coefficients often used for the k-ω model [8,15] are

    1 20.09, 0.52, 0.072, 2.0, 2.0kC C Cµ ω ω ωσ σ= = = = =                     (74)

It should be noted that the turbulence variable ω, which is defined by Eq. (68) and referred to here as the 
turbulent energy-dissipation frequency, is often referred to as the specific dissipation rate.

As is the case for the k-ɛ model, the standard k-ω model does not exhibit the proper behavior near a solid wall. 
By direct analogy with what has been done with the k-ɛ model, the k-ω model could also be implemented 
with the incorporation of wall damping functions. Although this terminology is not commonly used with 
the k-ω model, to emphasize similarities between the low-Reynolds-number corrections used for the k-ω 
model and those used for the k-ɛ model, here we will use exactly the same notation and terminology for both 
models. Adding wall damping functions to Eqs. (69), (72), and (73) yields

      ων µ kft =               (75)

    ])[()()(2 kkfCk ktkt ∇+⋅∇+−⋅=∇⋅ σννων µVSVSV








          (76)

    
 ])[()()(2 2

21 21 ωσννωωνω ωωω ∇+⋅∇+−⋅=∇⋅ tt fC
k
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         (77)

To complete any k-ω turbulence model in this form, the wall damping functions µf , kf , 1f , and 2f , could 
be specified as prescribed functions of v, ,V  k, and ω. As is the case for the k-ɛ model, these wall damping 
functions are simply empirical corrections, which are employed to force the model to agree more closely 
with near-wall experimental data.

Following the development of Eq. (34) for steady, incompressible, 2-D flow in Cartesian coordinates, the 
near-wall approximation for the k-ω turbulence model with wall damping functions can be written as
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Continuing to follow what was done with the k-ɛ model, the differential equations in this formulation can 
be nondimensionalized using the wall-scaled dimensionless variables defined in Eqs. (32) and (33) together 
with the traditional definition for ω+

      )(
),()( 2 xu

yxy
τ

ωνω ≡++             (79)

The result yields the dimensionless near-wall k-ω formulation for steady 2-D incompressible flow
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As an example of a k-ω turbulence model that includes wall damping functions, consider what is commonly 
called the Wilcox 1998 k-ω model [15], which is implemented in FLUENT [8]. Although Wilcox [15] uses 
a different notation, his formulation is easily rearranged to the format of Eq. (78). For 2-D incompressible 
flow the resulting wall damping functions are
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Notice that the turbulent dissipation Reynolds number Rt, as it is defined in the Wilcox 1998 k-ω model, 
differs from that defined for the k-ɛ models, i.e., εµω -- )()( ktkt RCR ≡ .

Following the development of Eq. (38), these wall damping functions can be written in terms of the wall-
scaled dimensionless variables that are defined in Eqs. (32) and (79). Hence, for fully developed flow in a 
2-D channel of half width l, the Wilcox 1998 k-ω model combined with the boundary conditions given in 
Eqs. (17), (18), and (36) yields
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As in the case of Eq. (38), one additional boundary condition is needed to complete the fifth-order formulation 
expressed in Eq. (82). In the presentation of his 1998 k-ω model Wilcox [15] states, “The final condition 
follows from examination of the differential equations for k and ω approaching the surface”. For a smooth 
wall in the limit 0→+y , the boundary condition 0)0( =+k  requires 0)0( =tR  and 0)0( =+ν . Thus, the differential 
equation for u+ and the ω-transport equation given in Eq. (82) reduce to

        

1
2

2
2

2
0, 1,

9
du d Cy C
dy dy

ω
ω

ω ω
++

++
+ +

→ = = −                  (83)

Let the leading-order term in the solution for +ω  be written as

     
+= +++ ayAy )(ω                     (84)

where A and a are as yet unknown constants. Using Eq. (84) in the near-wall approximation for the 
ω-transport equation given by Eq. (83) yields

     9)1( 12
222

ωω CyACyAaa aa −≅− +−+                   (85)

Equating the exponents and coefficients of +y  in the leading-order terms, this near-wall relation requires
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Hence, after using Eq. (86) in Eq. (84), the leading-order solution for +ω  yields
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To minimize numerical truncation error associated with the singularity, Wilcox [16] suggests that Eq. (87) 
should be used in place of the ω-transport equation “for the first 7 to 10 grid points above the surface.” 
Wilcox also points out that the grid must be fine enough so that “these grid points must lie below 5.2=+y  
…” In practice, Eq. (87) is often used as the final boundary condition by applying this relation only at the 
first grid point off the wall [8].

Because the leading-order solution given by Eq. (87) follows exclusively from the ω-transport equation 
with application of only the single boundary condition k+(0) = 0, all solutions to Eq. (82) will exhibit this 
asymptotic behavior, completely independent of the fifth boundary condition that is required to obtain a 
unique solution to this system of equations. Equation (87) is certainly a valid asymptote for the ω-transport 
equation in Eq. (82) near a smooth wall. Thus, Eq. (87) can be used as an alternative to the ω-transport 
equation for y+ approaching zero, provided that it is combined with five appropriate boundary conditions. 
However, Eq. (87) cannot be used as a substitute for one of the five required boundary conditions.

To show that Eq. (87) is not a valid boundary condition for completing the indeterminate system in Eq. (82), 
consider the similar system

    

2 22 2
2 4

2 2 4

ˆ ˆˆ ˆ ˆ1ˆ1 , , ,

ˆ ˆ( ) ( ) ( ) ˆ ( )ˆ 0 0, 0 0, 1 0, 1 0

du d k du d duy y y
dy dy dy dy y dy

u k k

ωω

ω

   
= − = − = −   

   
′ ′= = = =

         (88)

This indeterminate fifth-order system of differential equations with only four boundary conditions is 
mathematically similar to Eq. (82), yet it is simple enough to yield a closed-form solution. The general 
solution to Eq. (88) is

       

2 4 5 2 6 7 8
4 5

1 2 3

2 3 4

4 52

840 504 560 195ˆˆ , ,
2 12 20 10080

1 6 4ˆ
6 12

y C y C y y y y yu C y k C C y

y y yC C y
y

ω

− + −
= + − = + + + +

− + −
= + + +         (89)
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After applying the four boundary conditions given in Eq. (88) to eliminate four of the five arbitrary constants, 
the solution in Eq. (89) yields

   

2 4 2 5 6 7 8

4

2 3 4

42

4 2696 840 336 504 560 195ˆˆ , ,
2 12 10080

1 8 6 4ˆ
6 12

y y y y y y y y yu y k C

y y y yC
y

ω

− − + + − + −
= − = +

− + −
= + +

        (90)

Again as should be expected, there are an infinite number of solutions to any indeterminate fifth-order 
system of differential equations with only four boundary conditions, such as that specified in either Eq. (82) 
or Eq. (88). The remaining constant of integration C4 can be evaluated only by applying a mathematically 
appropriate boundary condition. No amount of analysis applied to the differential equations, no matter 
how sophisticated, will ever yield a result from which the remaining arbitrary constant in Eq. (90) can be 
determined.

Notice from Eq. (89) that, analogous to the result obtained from Eq. (82), the general solution for ω̂  
approaches y=0 in proportion to y-2. From examination of either Eq. (89) or Eq. (90), it should be clear that 
none of the integration constants could ever be obtained by using the asymptotic behavior of ω̂  for 0→y  as 
the fifth boundary condition for Eq. (88). In fact, because the behavior of ω̂  for 0→y  depends only on the 
differential equations in Eq. (88), no boundary condition for ω̂  can be applied to Eq. (88) at y=0. Likewise, 
because the near-wall behavior of +ω  depends only on the differential equations in Eq. (82), no wall 
boundary condition for +ω  can be applied to Eq. (82). The remaining boundary condition for Eq. (88) at y=0 
must be applied to k̂ . Similarly, the remaining wall boundary condition for Eq. (82) must be applied to k+.

As presented in Eq. (47), at a smooth wall the correct no-slip boundary condition for completing the fifth-
order formulation presented in Eq. (82) is 0)0( =+'k . The analogous boundary condition for Eq. (88) is 

0)0(ˆ =′k . It is easily shown that applying this wall boundary condition to the solution of Eq. (88) that is given 
in Eq. (90) yields C4 = -337/420, and the complete unique solution is

   

2 2 4 5 6 7 8

2 3 4

2

840 674 336 504 560 195ˆˆ , ,
2 10080

1 337 280 210 140 35ˆ
6 420

y y y y y y yu y k

y y y y
y

ω

− + − + −
= − =

− + − + −
= +

          (91)

Hence, we see that imposing two wall boundary conditions on k̂  and none on ω̂  is sufficient to determine 
a unique solution to the coupled fifth-order system of differential equations given in Eq. (88). There is no 
need to impose a wall boundary condition on ω̂ , and it is incorrect to do so.

It can be shown numerically that the Wilcox 1998 k-ω formulation given in Eq. (82) exhibits behavior 
similar to that shown analytically for Eq. (88). For example, Figure 10 and Figure 11 show k+ and ω+ for 
five solutions, which all satisfy both Eqs. (82) and (87). These converged and grid-resolved solutions were 
obtained using the same second-order successive underrelaxation algorithms that were used to obtain the 
k-ɛ solutions shown in Figure 6 and Figure 7. These results demonstrate that it is mathematically incorrect 
to use Eq. (87) as the sole substitute for the remaining boundary condition, which is required to obtain a 
unique solution to Eq. (82). Neither Eq. (87) nor any other relation obtained solely from the differential 
equations can be used to obtain a unique solution from the in determinate k-ω formulation given in Eq. (82). 
In addition to using Eq. (87) for numerical implementation, all three of the no-slip boundary conditions that 
are given in Eq. (47) should be explicitly enforced at a smooth wall.

Like the Lam-Bremhorst k-ɛ model, the wall damping functions for the Wilcox 1998 k-ω model decay 
rapidly with increasing y+, so the wall boundary condition 0)0( =+'k  has little impact on the predicted 
velocity profiles. Furthermore, as recommended by Wilcox [15], the use of smooth-wall boundary 
conditions can be avoided com pletely with the k-ω model by using the rough-wall boundary conditions 
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first suggested by Saffman [17]. For a smooth wall, 
Wilcox recommends using the rough-wall boundary 
conditions with a finite wall-scaled dimensionless 
roughness height less than 5. As Wilcox points 
out, the ability to implement rough-wall boundary 
conditions is a key advantage of the k-ω formulation 
over the k-ɛ formulation. For the most recent 
advancements in the k-ω model, including wall 
boundary conditions for rough and hydraulically 
smooth surfaces, see Wilcox [13,18].
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Figure 10: Effects of wall boundary conditions on turbulent energy predicted from the Wilcox 1998 k-ω model.
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Figure 11: Effects of wall boundary conditions on the turbulent dissipation frequency predicted from the Wilcox 
1998 k-ω model.

Conclusions
Despite the comments by Durbin [6], many of the 
k-ɛ turbulence models in common use today are 
based on incorrect wall boundary conditions, e.g., 
Eq. (39) or Eq. (46). The correct smooth-wall 
boundary conditions presented by Durbin [6] and 
given here in Eq. (47) are seldom used with k-ɛ 
turbulence models. Furthermore, the smooth-wall 
boundary conditions given in Eq. (47) should be 
used with k-ω and k- ζ turbulence models as well. 
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The eddy-viscosity models used with conventional 
k-ω and k-ζ turbulence models are obtained directly 
from the k-ɛ eddy-viscosity model by using simple 
changes of variables. Hence, applying a wall 
boundary condition to ω or ζ is no more correct than 
applying the equivalent wall boundary condition 
to ɛ. The correct smooth-wall boundary conditions 
for all k-ɛ, k-ω, and k-ζ turbulence models are those 
given by Eq. (47). Physics imposes no smooth-wall 
boundary condition directly on ɛ, ω, or ζ. As has 
always been the case, boundary conditions must be 
obtained from physics. They cannot be developed 
solely from the differential equations, and they 
cannot be selected arbitrarily for convenience of 
numerical implementation.

Because the zero-gradient boundary condition for k 
in Eq. (47) has been omitted from many commonly 
used turbulence models, these models are short one 
boundary condition and thus are mathematically 
indeterminate. Because any solution obtained 
from these models is not unique, numerical 
solutions obtained from these models may be 
highly implementation dependent. Furthermore, the 
authors have observed that solutions obtained from 
some implementations of these mathematically 
indeterminate turbulence models can be very sensitive 
to the grids and initial estimates used to obtain the 
solutions. Although one numerical implementation 
may converge to a solution that agrees closely 
with the unenforced boundary condition, another 
implementation of the same turbulence model could 
converge to a different solution. The fact that some 
particular numerical implementation converges to 
a solution that agrees closely with the unenforced 
boundary condition cannot be used to justify the 
implementation of any turbulence model that is 
mathematically indeterminate. Turbulence models 
must always be implemented with a complete set 
of physically correct boundary conditions. None of 
these boundary conditions can ever be replaced with 
a mathematical relation that has been developed 
solely from the differential equations.

Many low-Reynolds-number turbulence models, such 
as the Lam-Bremhorst k-ɛ model and the Wilcox 1998  
k-ω model, have wall damping functions that decay 
rapidly with increasing y+, so the smooth-wall 
boundary condition 0)0( =+'k  has little effect on the 
predicted velocity profiles. However, all turbulence 

models should be implemented in such a way that is 
mathematically determinate.
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