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Abstract

A parabolic trailing-edge flap is defined as a parabolic deflection of the airfoil geometry aft of 
a hinge point. Whereas a traditional flap deflection causes a discontinuous camber-line slope 
at the hinge point, a parabolic deflection produces a camber line that is first-order continuous 
at the hinge point. The geometry manipulation of a parabolic flap is mathematically defined 
such that it can be applied to any airfoil with a known camber line and thickness distribution. 
Small-angle and small-camber approximations are used to find analytical predictions for 
the ideal section flap effectiveness as well as the section pitching moment in comparison 
to a traditional flap. Results of the parabolic flap are compared to those of a traditional flap 
producing equivalent lift using thin airfoil theory and the vortex-panel method. It is shown 
that the ideal section flap effectiveness for a parabolic flap can be 33-50% higher than that of a 
traditional flap, depending on the flap-chord fraction. Additionally, a parabolic flap will produce 
a change in pitching moment 5-50% greater than that of a traditional flap for a given change 
in lift. Results may be applied in the design of modern morphing wings, for which complex flap 
deflections can be produced.

Nomenclature
A,B,C: Constant Coefficients used in Eq. (17); c: 
Airfoil Chord Length; cf: Flap Chord Length; LC~

: Airfoil Lift Coefficient; α,
~

LC : Airfoil Lift Slope; 
4

~
cmC : Airfoil Pitching-Moment Coefficient about the 

Quarter Chord; 
fmC δ,

~ : Change in Airfoil Pitching-
Moment Coefficient about the Quarter Chord 
with Respect to Flap Deflection for a Traditional 
Flap, Eq. (53); 

pmC δ,
~ : Change in Airfoil Pitching-

Moment Coefficient about the Quarter Chord with 

Respect to Flap Deflection for a Parabolic Flap, 
Eq. (52); l: Distance between the Hinge Point 
and Trailing Edge of an Undeflected Flap, Eq. 
(15); R: Dimensionless Constant, Eq. (26); Rm: 
Equivalent-Lift Pitching-Moment Ratio, Eq. (61); 

δR : Equivalent-Lift Deflection Ratio, Eq. (55); εR
: Parabolic-Flap Effectiveness Ratio, Eq. (50); r: 
Distance between the Hinge Point and a Point on 
the Camber Line aft of the Hinge, Eq. (8); t: Airfoil 
Thickness Distribution; tm: Percent Maximum 
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Airfoil Thickness; x, y: Coordinates in the Airfoil 
Axial and Normal Directions, Respectively; xc, yc: 
Coordinates of the Airfoil Camber Line Including 
Flap Deflection; xf, yf: Coordinates of the Flap Hinge; 
xl, yl: Coordinates along the Airfoil Lower Surface; 
xmc: x-Coordinate of Airfoil Maximum Camber; xo: 
x-Coordinate along the Original Chord Line without 
Flap Deflection; xp, yp: Coordinates of the Deflected 
Parabolic Flap Neutral Line, Eqs. (32) and (33); xu, 
yu: Coordinates along the Airfoil Upper Surface; 
yc0: y-Coordinates of the Airfoil Camber Line 
with Zero Flap Deflection; ymc: Airfoil Maximum 
Camber; ynl: y-Coordinates of the Undeflected Flap 
Neutral Line, Eq. (34); α : Airfoil Angle of Attack; 

0Lα : Airfoil Zero-Lift Angle of Attack; γ : Angle 
between Transformed Flap Neutral Line and the 
ξ -axis, Eq. (22); cy∆ : Vertical Distance between 
the Camber Line and the Undeflected Flap Neutral 
Line, Eq. (35); fδ : Deflection Angle of a Traditional 
Flap; pδ : Deflection Angle of a Parabolic Flap, Eq. 
(18); ifε : Ideal Section Flap Effectiveness of a 
Traditional Flap, Eq. (49); ipε : Ideal Section Flap 
Effectiveness of a Parabolic Flap, Eq. (48); θ : 
Change of Variables for the Chordwise Coordinate, 
Eq. (44); fθ : θ  Value at the Flap Hinge Location, 
xf ; ,  ξ η : Flap Coordinate System Relative to Flap 
Neutral Line; 0ξ : Coordinate along the Undeflected 
Flap Neutral Line that Corresponds to pξ  along the 
Deflected Parabolic Flap Neutral Line; ,  p pξ η : 
Coordinates of the Deflected Parabolic Flap Neutral 
Line in the Flap Coordinate System; ,  TE TEξ η : 
Coordinates of the Flap Trailing Edge in the Flap 
Coordinate System; φ : Local Camber-Line Slope 
of Undeflected Camber Line, Eq. (12); ϕ : Angle 
between Flap Neutral Line and x-axis, Eq. (16); ψ
: Angle of Line Passing through Hinge Point and a 
Point of Interest on the Flap, Eq. (9)

Introduction
Modern research for aircraft structures and actuation 
mechanisms has resulted in the development of 
new methods for creating changes in camber or 
initiating flap deflections. For example, the Air 
Force Research Lab has developed a variable-
camber compliant wing (VCCW), capable of 
changing camber from a NACA 2412 to a NACA 
8412 through the use of an embedded actuator [1,2]. 
A similar technology, currently under development 

at NASA, is the variable camber compliant trailing 
edge (VCCTE) [3,4], which can produce variable 
flap geometries from a series of incremental flap 
sections. Additionally, shape-memory alloy (SMA) 
technology can be used for actuation to produce 
changes to airfoil shape during flight [5]. Active-
camber concepts inspired by fish biology are also 
being investigated [6,7]. The technologies and 
applications currently under development are 
quite vast, and we do not attempt an exhaustive 
list here. Suffice it to say that these technologies 
allow sophisticated control over airfoil camber, 
twist, and/or thickness during flight. Advantages 
of these complex airfoil control methods include 
reduced RADAR signature, improved aerodynamic 
efficiency, and passive control. Recent relevant 
publications include [8-10]. Here we consider one 
control approach obtained by deflecting the aft 
portion of an airfoil in a parabolic manner. This will 
be termed a parabolic flap.

Although the parabolic flap has been studied by 
other authors [6,7,11,12], a rigorous definition of the 
resulting airfoil geometry that preserves flap length 
has not been made. Additionally, a full understanding 
of the ideal aerodynamic performance of the 
parabolic flap in comparison to a traditional flap has 
not been obtained. Because the ideal aerodynamic 
performance analysis for traditional flap deflections 
form the foundation of our understanding of 
traditional flaps, a rigorous definition of the 
geometry and associated aerodynamic theory is 
crucial to understanding the benefit of parabolic-
flap technology. We begin with a brief overview 
of airfoil geometry including the definitions of a 
traditional flap, but use a nomenclature conducive 
to the application of a parabolic-flap deflection.

The surface of an airfoil is defined as the locus of 
points offset perpendicular to the camber line by 
one-half the local thickness. The camber line and 
thickness are often defined as a function of axial 
position along the airfoil. Traditional airfoil theory 
is developed using the x-coordinate as the axial 
location along the chord. In order to allow for flap 
deflections, we will use xo as the coordinate along 
the original chord line with xc(xo) and yc(xo) as the 
coordinates of the camber line. The thickness at 
any point along the airfoil is defined as t(xo). For 
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an airfoil without a flap, xc = xo along the length of the entire airfoil. Given camber-line and thickness 
distributions, the upper and lower coordinates of any airfoil can be computed from

     
( ) ( ) ( )

( )22 1
o c

u o c o

c

t x dyx x x x
dxdy dx

= −
+

                       (1)

     ( ) ( ) ( )
( )22 1

o c
l o c o

c

t x dyx x x x
dxdy dx

= +
+

                (2)

     

( ) ( ) ( )
( )22 1

o
u o c o

c

t x
y x y x

dy dx
= +

+
                    (3)

     

( ) ( ) ( )
( )22 1

o
l o c o

c

t x
y x y x

dy dx
= −

+
                    (4)

where dyc/dx is the slope of the camber line. For example, a commonly used camber-line distribution is that 
of the NACA 4-digit series, which is defined as [13]

               

( )

2

0 2

2 , 0

2 ,

o o
mc o mc

mc mc

c o

o o
mc mc o

mc mc

x xy x x
x x

y x
c x c xy x x c
c x c x

       − ≤ ≤   
       = 

     − −
 − ≤ ≤    − −      

              (5)

where xmc is the location of maximum camber, ymc is the maximum camber, c is the chord length, and yc0 
denotes the y-coordinates of the camber line with zero flap deflection. The slope of the camber line for this 
airfoil series without a flap is

    

( )

( )
( )
( )

0

2 1 , 0

2 1 ,

mc o
o mc

mc mcc
o

omc
mc o

mc mc

y x x x
x xdy x

dx c xy x x c
c x c x

  
− ≤ ≤  

 = 
 −− − ≤ ≤  − − 

              (6)

The thickness for the series is defined as

  
( )

2 3 4

2.969 1.260 3.516 2.843 1.015o o o o o
o m

x x x x xt x t
c c c c c

      = − − + −      
       

         (7)

where tm is the percent maximum thickness. Note that this airfoil definition has a small gap at the trailing edge. 
An alternate equation for the thickness distribution that does not have a gap at the trailing edge, is 

( ) ( ) ( ) ( )2 3 4 = 2.980 1.320 3.286 2.441 0.815o m o o o o ot x t x c x c x c x c x c − − + − 
.

We now consider the geometry of an airfoil with a traditional flap. The flap deflection is created by rotating 
the locus of points on the original camber line about the point (xf, yf) by the flap deflection, fδ , with 
a positive deflection defined as downward. The distance between the hinge point and any point on the 
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undeflected camber line aft of the hinge is

     ( ) ( )22

0c o f o fr y x y x x = − + −               (8)

The line that passes through the hinge point and the point of interest on the undeflected flap is at an angle 
relative to the horizontal of

     

( )01tan c o f

o f

y x y
x x

ψ −
 −

=   − 
             (9)

The corresponding point on the deflected camber line is found by rotating the original point on the undeflected 
camber line by the flap deflection, fδ . Applying this rotation to each point aft of the flap hinge gives the 
airfoil camber-line geometry including deflection

    ( )
, 0

cos ,
o o f

c
f f f o

x x x
x

x r x x cδ ψ

< <=  + − < <           
(10)

    ( )
0 , 0

sin ,
c o f

c
f f f o

y x x
y

y r x x cδ ψ

< <=  − − < <           
(11)

The local camber-line slope for the undeflected flap at any point is 0cdy dx . Defining the local angle of this 
slope as

      

1 0tan cdy
dx

φ −  ≡  
              

(12)

The camber-line slope for the geometry of the deflected flap is 

     
( )

0 , 0

tan ,
c o fc

f f o

dy dx x xdy
x x cdx φ δ

≤ ≤=  − ≤ ≤                   
(13)

Applying the angle sum identity ( ) ( ) ( )tan  = tan tan / 1 tan tanf f fφ δ φ δ φ δ− − + , the camber-line slope at 
any point on the airfoil with the deflected flap is

    

 
0

0

0

, 0
tan

,
1 ( ) tan

c o f
c

c f
f o

c f

dy dx x x
dy dy dx

x x cdx
dy dx

δ
δ

≤ ≤
 −=  ≤ ≤ +            

(14)

The upper and lower surfaces of an airfoil with flap deflection can be found by using Eqs. (10), (11), and 
(14) in Eqs. (1)-(4). This development can be used to evaluate the geometry of a deflected flap for any 
airfoil with a given camber-line and thickness distribution. If the vertical position of the flap hinge lies on 
the camber line, the camber line is continuous at the hinge point. However, this flap deflection introduces 
a step change in the slope of the camber line at the hinge point. Note that for any positive deflection with 
a hinge point within the airfoil surface, the lower surface of the airfoil will intersect itself. The same will 
happen on the upper surface with a negative flap deflection. This geometrical interference can be addressed 
using various methods, including clipping the geometry or adding a corner radius.

Geometric Definition of a Parabolic Trailing-Edge Flap

We have characterized a traditional flap as that created by uniform rotation of the camber line aft of the 
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hinge point. In other words, for a traditional flap 
deflection, fδ  is constant for all points aft of the 
hinge point. We now consider the geometric 
definition of a parabolic trailing-edge flap. At first 
thought, it may seem most intuitive to define a 
parabolic trailing-edge deflection as that produced 
by a linear variation in flap-deflection angle from 
zero at the hinge point to some finite value at the 
trailing edge. However, such a deflection produces 
a geometry with nearly constant curvature along the 
flap. Because airfoil thickness decreases near the 
trailing edge, the combination of constant curvature 
and decreasing thickness produces a strong adverse 
pressure gradient, which can initiate flow separation. 
An alternate method that can produce more desirable 
pressure gradients is that proposed here.

We first define what will be termed the flap neutral 
line, which is the straight line intersecting the hinge 
point and the trailing edge. The distance between 
the hinge point and the trailing edge along this line 
is

( )22
f fl y c x= + −                   (15)

The flap neutral line sits at an angle to the x-axis of












−
−≡ −

f

f

xc
y1tanϕ

                  
(16)

It is convenient to define a flap coordinate system 
( ),  ξ η  corresponding to the undeflected flap neutral 
line with the origin at the hinge point, as shown in 

η

xf

yf

cf

lφ
Camber Line Hinge Point

Undeflected
Trailing Edge

Transformed Flap Neutral Line

Deflected Trailing Edge Flap Neutral
Line

y
c

ϕ

pδ

ξ
x

Figure 1: Camber-line geometry for an airfoil section with a parabolic flap at positive deflection.

Figure 1. This coordinate system is offset from the 
airfoil coordinate system by (xf, yf), and rotated relative 
to the airfoil coordinate system by the angle ϕ . Here 
we define a parabolic trailing-edge deflection as that 
produced by a deflection of the flap neutral line, 
such that the modified line lies along a parabola 
in the flap coordinate system, as shown in Figure 
1. The position of the camber line relative to the 
transformed flap neutral line is maintained through 
the transformation, as well as the airfoil surface 
relative to the transformed camber line. The dashed 
line in Figure 1 represents the undeflected camber 
line, and the thick solid line represents the camber 
line with flap deflection. For an airfoil with positive 
camber at a positive flap deflection, the airfoil camber 
line and upper surface will be lengthened, and the 
airfoil lower surface will be shortened. However, 
the length of the flap neutral line will remain the 
same. Other definitions could be used for defining a 
parabolic flap deflection, but this definition appears 
to the authors to be the most geometrically consistent 
without unnecessarily complicating the geometric 
definition.

A general form of a parabolic equation, ( )pη ξ , in 
the flap coordinate system is

( ) 2
p A B Cη ξ ξ ξ= + +                   (17)

A parabolic deflection of the flap neutral line must 
satisfy the geometric continuity boundary conditions 

( )0 0pη =  and ( )0 0pd dη ξ = , which gives C = 0 
and B = 0. The final coefficient, A, is related to the 
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flap-deflection angle, pδ , defined here as

     

1tan TE
p

TE

ηδ
ξ

−  
≡ −  

              
(18)

where ( ),  TE TEξ η  is the coordinate of the rotated airfoil trailing edge in the flap coordinate system, and 
pδ  represents the angle that the trailing edge is rotated about the hinge point, with a positive deflection 

being downward. Applying the boundary condition in Eq. (18) to Eq. (17) gives

      

tan p

TE

A
δ

ξ
= −                      (19)

Using Eq. (19) in Eq. (17) gives the parabolic relation and first derivative

      
( )

2

tanp p
TE

ξη ξ δ
ξ

= −            (20)

      

2 tanp
p

TE

d
d
η ξ δ
ξ ξ

= −
            

(21)

The angle between the transformed flap neutral line and the ξ -axis at any point along the transformed neu-
tral line will be defined here as γ , i.e.,

     
1 1 2tan tan tanp

p
TE

d
d
η ξγ δ
ξ ξ

− −   
≡ = −   

   
             (22)

In order to complete the geometric definition, we must be able to relate the ξ -coordinate of the deflected flap 
neutral line, pξ , to the ξ -coordinate along the original undeflected flap neutral line, 0ξ . Because the neutral 
line does not change length during deflection, any coordinate along the original undeflected neutral line is 
equal to the corresponding length along the parabolic curve of the deflected neutral line. The undeflected ξ
-coordinate, 0ξ , can be found by integrating along the parabolic curve of the deflected neutral line

     
∫
=









+=

p

d
d

d p
o

ξ

ξ

ξ
ξ

η
ξ

0

2

1              (23)

Using Eq. (21) in Eq. (23) and integrating gives the relation between 0ξ  and pξ  for any point on the flap

    
2

2 1
24 tan 1 sinh 2 tan

2 4 tan
p p pTE

o p p
TE p TE

ξ ξ ξξξ δ δ
ξ δ ξ

−  
= + +  

 
                          (24)

At the trailing edge, 0  = lξ  and Eq. (24) can be used to evaluate the ξ -coordinate of the deflected trailing 
edge,

             

2
TE

l
R

ξ =                  (25)

where R is a dimensionless constant that depends on the flap deflection angle

     

( )1
2

sinh 2 tan
4 tan 1

2 tan
p

p
p

R
δ

δ
δ

−

≡ + +                 (26)
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The η -coordinate of the deflected trailing edge can be found by using Eq. (25) in Eq. (20)

      

2 tanTE p
l

R
η δ= −                                                                (27)

Using Eq. (25) in Eq. (24) gives 0ξ  as a function of pξ  and the flap angle

   








++= −

p
p

p
p

pp
o R

lR
lR

l
δ

ξ
δ

δ
ξξ

ξ tansinh
tan2

1tan
2

122
2

2

         (28)

For 0=pδ , Eqs. (26) and (28) are indeterminate. Thus, in the limit as 0→pδ , these equations should be 
replaced with the leading-order solution from the Taylor series expansion

      141 2 ++= pR δ              (29)

      












++= 11

2
22

2

2

p
pp

o R
l

δ
ξξ

ξ             (30)

For double-precision computations, roundoff error becomes noticeable for 0006.0<pδ  deg. Using Eq. (29) 
instead of Eq. (26) for p 0.1δ <=  deg introduces errors for R on the order of 1.0 × 10-4 percent. For p 0.01δ <=  
deg, Eq. (29) produces errors on the order of 1.0 × 10-6 percent.

With the relations described above, the geometry of the parabolic flap can be computed as follows: given 
a chord length, c, airfoil camber distribution, 0cy , airfoil thickness distribution, t(xo), location of the flap 
hinge point, (xf, yf), and flap angle, pδ , Eqs. (15) and (16) can be used to define the flap neutral line. 
Equation (26) is then used to compute the constant, R, which is used in Eqs. (25) and (27) to compute TEξ  
and TEη . Given an axial coordinate aft of the hinge point that lies along the airfoil chord line with zero flap 
deflection, xo, the point on the flap neutral line that corresponds to this same axial location is

      ( )
( )

o f
o

f

x x
l

c x
ξ

−
=

−
             (31)

Equation (28) is then used to solve for the corresponding pξ  value using an iterative solver such as Newton’s 
method. An initial guess of p TE o lξ ξ ξ=  yields good results. Equations (20) and (21) are used to evaluate 
the parabolic function and its first derivative at each value of pξ . The coordinates of the deflected parabolic 
flap neutral line in the flap coordinate system, ( ),  p pξ η , can be transformed to the airfoil coordinate system 
(xp,yp) through the transformation

     
ϕηϕξ sincos ppfp xx −+=             (32)

     
ϕηϕξ cossin ppfp yy ++=              (33)

From the definition of the flap neutral line and Eq. (31), the y-coordinate of any point along the undeflected 
flap neutral line can be found from

     
( )

1 1
( )

o fo
nl f f

f

x x
y y y

l c x
ξ  − = − = −   −                (34)

The vertical distance between the camber line and the undeflected flap neutral line at any point, xo, is

     ( ) ( ) ( )0c o c o nl oy x y x y x∆ ≡ −                 (35)
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Figure 2: Airfoil geometry and camber line for the NACA 2412 airfoil without flap deflection, with a traditional 
flap deflection, and with a parabolic flap deflection with xf /c = 0.7 and fδ  = pδ  = 15 deg.
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Figure 3: Camber-line slope of the NACA 2412 airfoil without flap deflection, with a traditional flap deflection, 
and with a parabolic flap deflection with xf /c = 0.7 and fδ  = pδ  = 15 deg.
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The transformed camber line at the point of interest is found by an offset to the transformed flap neutral line, 
rotated by the change in local angle of the flap neutral line, γ . Using Eq. (22) gives

    

1

, 0

2
sin tan tan ,

o o f

pc
p c p f o
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x x x

x
x y x x c

ξ
δ

ξ
−

< <
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            (36)
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(37)

The slope of the camber line including flap deflection can be found by adding the original camber-line slope 
given in Eq. (12) to the slope of the transformed flap neutral line, given in Eq. (22), at any point of interest. 
This gives

 
    ( )

0 , 0
tan ,

c o fc

f o

dy dx x xdy
x x cdx φ γ
≤ ≤

=  + ≤ ≤            (38)

Using Eqs. (12) and (22) in Eq. (38) and applying the angle sum identity 

( ) ( ) ( )tan   tan tan / 1 tan tanφ γ φ γ φ γ+ = + − , the camber-line slope at any point on the airfoil with the 

parabolic flap is
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Figure 4: Pressure coefficient along upper and lower surfaces of the NACA 2412 airfoil without flap deflection, 
with a traditional flap deflection, and with a parabolic flap deflection with xf /c = 0.7, fδ  = pδ  = 15 deg, and an 
angle of attack of zero.
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            (39)

Equations (36), (37), and (39) can then be used in Eqs. (1)-(4) to evaluate the airfoil surface geometry.

Figure 2 shows the surface geometry and camber line of a NACA 2412 airfoil without a flap, with a 
traditional flap deflection of 15fδ =  deg, and with a parabolic flap deflection of 15pδ =  deg. For each 
case, the flap hinge location was set to 7.0=cx f  and ( )0 0.015f c fy c y x c= = . Figure 3 shows the 
associated camber-line slopes, and Figure 4 shows the associated pressure coefficient along the upper and 
lower surfaces for each case at an angle of attack of zero. Note from Figure 3 that the camber-line slope for 
the traditional flap has a discontinuity at the hinge point, whereas the camber-line slope of the parabolic flap 
is continuous across the entire airfoil. The discontinuity in camber-line slope characteristic of traditional 
flap deflections causes a pressure spike at the hinge point, which can be seen in Figure 4. This large pressure 
gradient can induce flow separation at or near the hinge point. The parabolic flap does not exhibit a pressure 
spike at the hinge point, but does have a large adverse pressure gradient near the airfoil trailing edge, which 
can induce flow separation near the flap trailing edge.

The method outlined in this section can be used to define the geometry of any airfoil with a parabolic flap. 
This has been demonstrated here using the NACA 4-digit airfoil series, but can be applied to any arbitrary 
airfoil, provided that the airfoil camber line and thickness are known as a function of axial coordinate. This 
process preserves the length along the outer surface of symmetric airfoils. For airfoils with non-zero camber, 
changes to the outer-surface length are extremely small. For example, the surface length of a NACA 8412 
airfoil with 7.0=cx f  and 50pδ =  deg differs from the undeflected surface length by about 0.3%.

Ideal Aerodynamic Performance
We now consider the ideal aerodynamic performance of a parabolic trailing-edge flap compared to that of 
a traditional flap. We will approach this through the use of thin airfoil theory, and will include vortex-panel 
solutions to demonstrate thickness and camber effects. Thin airfoil theory was developed by Max Munk, 
who published the theory in 1922 as a NACA report [14]. Versions of his theory were soon published with 
minor modifications by Birnhaum [15] and Glauert [16-18]. Many of the early NACA airfoils were devel-
oped using this theory [19], and summaries of the theory can be found in many aerodynamics textbooks 
[20-26]. Glauert was particularly instrumental in extending the original theory to include the effects of flaps 
[18]. Glauert’s extension to the original theory has been summarized and further discussed by Abbott and 
von Doenhoff [27] and Phillips [28].

Thin airfoil theory applies the approximations of thin airfoils at small angles of attack, small camber, and 
small flap deflections to obtain predictions for the lift and quarter-chord pitching-moment coefficients. This 
theory gives

      
( ), 0L L LC C α α α= −               (40)

     ( )
4

0

1 cos 2 cos
2c

c
m

dyC d
dx

π

θ

θ θ θ
=

= −  ∫            (41)

where the lift slope and zero-lift angle of attack are

      πα 2~
, =LC                (42)
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( )0
0

1 1 cosc
L

dy d
dx

π

θ

α θ θ
π =

= −∫                     (43)

and the airfoil x-coordinate is related to θ through 
the change of variables

( ) ( ) ( )11 cos ,      cos 1 2
2
cx x cθ θ θ −= − = −    (44)

Within the limits of thin airfoil theory, the lift slope 
is independent of the camber line, as can be seen in 
Eq. (42). Thus, within the limits of this theory, the 
camber line only affects the lift through its effect on 
the zero-lift angle of attack, as can be seen from Eq. 
(43). Additionally, the camber line affects the airfoil 
pitching moment as can be seen in Eq. (41).

Ideal section flap effectiveness

Thin airfoil theory can be used to estimate the ideal 
section flap effectiveness, which is defined as the 
negative of the change in zero-lift angle of attack 
with respect to flap deflection for small deflection 
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Figure 5: Ideal section flap effectiveness of traditional and parabolic flaps as predicted by thin airfoil theory, the 
vortex panel method, and Sanders, et al. [11].

angles [27,28]. In order to obtain a closed-form 
approximation for the ideal section flap effectiveness, 
we will retain the small-camber, small-angle, 
and small-deflection approximations used in thin 
airfoil theory. From Eqs. (29), (30), and (25) we 
obtain the small deflection-angle approximations 

pp δδ ≈tan , 2≈R , op ξξ ≈ , TE lξ ≈ , xxo ≈ , and 
( )( )02 / / 1o p cl dy dxξ δ << . Using these small-angle 
approximations and applying Eq. (31), the camber-
line slope given in Eq. (39) for a parabolic flap can 
be written as

( )
( )

0

0, 0

2 ,

f

c c
f

p f
f

x x
dy dy x x

x x cdx dx
c x

δ

≤ ≤


−= + − ≤ ≤ −

     (45)

This is the same small-angle camber-line slope used 
by Sanders, Eastep, and Forster [11]. Using Eq. (45) 
in Eq. (43) with the change of variables given in 
Eqs. (44) gives
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where
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−≡ −− 12cos21cos 11

c
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c
x ff
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is the flap hinge location, and the ratio cc f  is the flap-chord fraction. The first term in Eq. (46) is the zero-
lift angle of attack of the airfoil without any flap deflection. The change in zero-lift angle of attack for a 
given flap-chord fraction and flap deflection can be evaluated from the second term in Eq. (46). Note that 
within the small-angle and small-deflection approximations used, this term is directly proportional to the 
flap deflection, pδ . Integrating this term gives the ideal section flap effectiveness of a parabolic flap,

    ( )( ) ( )
( )

0
1 2cos sin 2 cos

1 cos
f f f fL

ip
p f

θ π θ θ θαε
δ π θ

+ − + +∂
≡ − =

∂ +
        (48)

Following the same process, but using the camber-line slope given in Eq. (14) gives the ideal section flap 
effectiveness of a traditional flap [18,27,28]

    
( )0 sin1 1 cos 1

f

f fL
if

f

d
π

θ θ

θ θαε θ θ
δ π π=

−∂
≡ − = − = −

∂ ∫                     (49)

From Eqs. (48) and (49) we see that the ideal section flap effectiveness of either flap geometry as predicted 
by thin airfoil theory depends on only the flap-chord fraction, and is independent of the flap deflection 
angle, airfoil camber-line distribution, or airfoil thickness distribution. Figure 5 shows the ideal section 
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Figure 6: Parabolic-flap effectiveness ratio as predicted by thin airfoil theory and the vortex panel method.
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flap effectiveness of both traditional and parabolic flap geometries at small deflections as predicted by Eqs. 
(48) and (49). Results from a vortex panel method [29] for NACA 2412 and 8420 airfoils with each flap 
type are included for comparison. For the vortex-panel computations, 400 nodes around the airfoil surface 
were used to ensure grid convergence, and forward differencing with a step size of 1 deg deflection was 
used to compute the ideal section flap effectiveness. This data falls very near the analytical solutions given 
by Eqs. (48) and (49) and demonstrates that the ideal section flap effectiveness is only a weak function of 
camber and thickness when only potential flow is considered. Sanders, Eastep, and Forster [11] do not show 
plots of the ideal section flap effectiveness directly. However, they do include computational results for the 
change in lift coefficient per degree of flap deflection. These results were digitized and used to compute an 
estimate for the ideal section flap effectiveness from their work. These results are included in Figure 5 for 
comparison. Since their small-angle camber-line slope is the same as that given in Eq. (45), any deviation 
from the grey symbols and Eqs. (48) and (49) visible in Figure 5 are likely due to plot-digitization errors.

One measure of aerodynamic performance of the parabolic flap is the ratio of the ideal section flap 
effectiveness of the parabolic flap to that of the traditional flap. We will call this ratio the parabolic-flap 
effectiveness ratio. Dividing Eq. (48) by Eq. (49) gives the parabolic-flap effectiveness ratio as predicted 
from thin airfoil theory

    

( )( ) ( )
( )( )

1 2cos sin 2 cos

1 cos sin
f f f fip

if f f f

Rε

θ π θ θ θε
ε θ π θ θ

+ − + +
≡ =

+ − +          (50)

Figure 6 shows the parabolic-flap effectiveness ratio as a function of flap-chord fraction computed from 
Eq. (50). Results are also included for the NACA 2412 and 8420 airfoils as computed from the vortex 
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Figure 7: Change in quarter-chord pitching moment with respect to flap deflection for traditional and parabolic 
flaps as predicted by thin airfoil theory, the vortex panel method, and Sanders, et al. [11].
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panel method. From Figure 5 and Figure 6 we see that a single degree of deflection from the parabolic flap 
produces significantly more lift than a single degree of deflection from a traditional flap. This is because a 
single degree of deflection of a parabolic flap produces a larger change in camber-line slope near the trailing 
edge than does a traditional flap. Hence, a parabolic flap will produce a larger change in lift than a traditional 
flap for a given flap-deflection angle. This should not be understood to mean that the parabolic flap is always 
more aerodynamically efficient than a traditional flap. Indeed, additional aerodynamic characteristics are 
also important, including the effect of the flap on airfoil pitching moment as well as the effects of viscosity 
and parasitic drag. However, within the limits of potential flow, the parabolic flap has an ideal section flap 
effectiveness ranging from 33.3% to 50% higher than that of a traditional flap. Numerical results from the 
NACA 2412 and 8420 airfoils show that camber and thickness produce results that deviate only slightly 
from the thin-airfoil approximation given in Eq. (50).

Section quarter-chord pitching moment

In a similar manner, we can use thin airfoil theory to estimate the change in section quarter-chord pitching 
moment due to flap deflection. Using Eq. (45) in Eq. (41) with the change of variables given in Eq. (44) 
gives

     
( ) ( ) ( )
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= − − − −      +∫ ∫         (51)

Within the approximations used for thin airfoil theory, the first term in Eq. (51) is exactly the section 
pitching moment of the airfoil with zero flap deflection, and the second term is proportional to the flap 
deflection. The change in section pitching moment with respect to flap deflection can be evaluated by 
integrating the second term and differentiating the result with respect to flap deflection,
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                    (52)

Following the same process, but using the camber-line slope given in Eq. (14) gives the change in section 
pitching moment with respect to flap deflection of a traditional flap [28]
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          (53)

From Eqs. (52) and (53) we see that the change in section pitching moment with respect to flap deflection 
of either flap geometry is predicted by thin airfoil theory to depend on only the flap-chord fraction, and 
is independent of the flap deflection angle, original airfoil camber line distribution, or airfoil thickness 
distribution. Figure 7 shows the change in section quarter-chord pitching moment with respect to flap 
deflection for both traditional and parabolic flap geometries at small deflections as predicted by Eqs. (52) 
and (53). Results from a vortex panel method [29] for NACA 2412 and 8420 airfoils at zero degrees angle 
of attack with each flap type are included. The same node count and finite-differencing techniques as 
mentioned previously were used for these computations. Additionally, estimated results from linear potential 
aerodynamic computations published by Sanders, Eastep, and Forster [11] are included for comparison. 
Airfoil thickness tends to increase the magnitude of the change in pitching moment with respect to flap 
deflection, while viscosity and hinge effects can significantly decrease this magnitude [28]. Therefore, thin 
airfoil theory or vortex-panel results should only be used for preliminary design.

Notice that the change in section pitching moment with respect to flap deflection predicted by thin airfoil 
theory for the traditional flap goes to zero as the flap-chord fraction approaches 1. This is because for a 
flap-chord fraction of 1, a traditional flap deflection is equivalent to a rotation of the complete airfoil, and 
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Figure 9: Equivalent-lift deflection ratio as a function of flap-chord fraction predicted from thin airfoil theory 
and the vortex panel method.
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using a NACA 2412 airfoil with cf /c=0.3, computed using a vortex panel method.
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therefore equivalent to a change in angle of attack. 
Since the aerodynamic center of an airfoil is 
predicted by thin airfoil theory to be located at the 
quarter chord, this theory also predicts zero change in 
section pitching moment about the quarter chord due 
to a change in flap deflection for 1=cc f . On the 
other hand, a parabolic flap deflection for 1=cc f  
is not equivalent to a rotation of the complete 
airfoil. Rather, a parabolic flap deflection for this 
case has zero deflection at the leading edge, and a 
continuously increasing deflection along the chord, 
with the maximum deflection occurring at the 
trailing edge. Hence, for a parabolic flap, the change 
in section quarter-chord pitching moment with 
respect to flap deflection is nonzero for 1=cc f . It 
is also interesting to note that the maximum absolute 
change in section pitching moment due to flap 
deflection for a traditional flap occurs in the range 

3.02.0 ≤≤ cc f , whereas that for the parabolic flap 
occurs in the range 6.04.0 ≤≤ cc f .

Equivalent-lift deflections
In order to evaluate the aerodynamic performance 
of the two flap types, it is perhaps best to compare 
their performance at deflections that produce equiv-
alent lift, i.e.,

( ) ( )L p L fC Cδ δ= 

                   
(54)

Here we define an equivalent-lift deflection ratio, 

δR , as the ratio of parabolic-flap deflection to 
traditional flap deflection required to produce the 
same amount of lift for a given flap-chord fraction 
and angle of attack, i.e.,

  , ,~
α

δ δ
δ

ccCf

p

fL

R ≡
                  (55)

For example, the equivalent-lift deflection ratio for 
a NACA 2412 airfoil with 3.0=cc f  at an angle 
of attack of zero was computed using a vortex 
panel method. A traditional flap deflection of 15 
deg was specified, and Newton’s method was used 
to compute the parabolic flap deflection that would 
produce the same lift coefficient for the airfoil at the 
same flap-chord fraction and angle of attack. The 
equivalent parabolic-flap deflection was found to be 

11.23 deg, which gives an equivalent-lift deflection 
ratio of 0.748. In this example, using a parabolic 
flap requires only about 75% of the deflection that 
would be required by a traditional flap to create the 
same change in lift coefficient. Figure 8 shows these 
equivalent-lift deflection geometries.

An estimate for the equivalent-lift deflection ratio 
for small deflections as a function of hinge location 
can be obtained from thin airfoil theory. Within the 
small-angle approximations of this theory, the lift 
coefficient is a linear function of the flap deflection 
for both traditional and parabolic flaps. For a 
parabolic flap, using Eqs. (46) and (48) in Eq. (40) 
gives the thin-airfoil-theory approximation for the 
lift coefficient at small flap deflections

( ), 0 0L L L ip pC C α α α ε δ = − + 
                   (56)

where ( )0 0Lα  is the zero-lift angle of attack of 
the airfoil with no flap deflection. For a traditional 
flap, the lift coefficient at small flap deflections can 
likewise be written as

( ), 0 0L L L if fC C α α α ε δ = − + 
                   (57)

From the lift relations in Eqs. (56) and (57), we 
see that the equivalent-lift constraint from Eq. (54) 
requires

ip p if fε δ ε δ=                    (58)

Using Eqs. (48) and (49) in Eq. (58) and rearranging, 
the equivalent-lift deflection ratio predicted by thin 
airfoil theory for small flap deflections is

( )( )
( )( ) ( )

1 cos sin 1
1 2cos sin 2 cos

f f f

f f f f

R
Rδ

ε

θ π θ θ

θ π θ θ θ

+ − +
= =

+ − + +
  (59)

Figure 9 shows the equivalent-lift deflection ratio 
as a function of flap-chord fraction given by Eq. 
(59). Because this relation was developed using the 
small-angle approximation for flap deflection inher-
ent from thin airfoil theory, we would not expect it 
to be accurate for large deflections. To demonstrate 
sample effects of deflection magnitude, results from 
the vortex panel method [29] are included for the 
NACA 0001 airfoil over a range of traditional flap 
deflection angles, fδ . Inviscid results from vortex 
panel methods may vary slightly from those shown 
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in Figure 9 due to treatment of intersecting surfaces at large deflections. To demonstrate the effects of 
thickness and camber, results from the vortex panel method are included for NACA 0020, 4401, and 4420 
airfoils for small deflections. Note that for small deflections, the equivalent-lift deflection ratio approaches 
3/4 for small flap-chord fractions, and 2/3 for large flap-chord fractions. Airfoil thickness tends to increase 
this ratio for flap-chord fractions less than about 0.75, and decrease this ratio for flap-chord fractions greater 
than 0.75. Camber appears to have nearly negligible effect. The equivalent-lift deflection ratio increases for 
increasing deflection-angle magnitudes, and approaches 1=δR  as 90fδ → ±  deg.

The changes in section quarter-chord pitching moment given by Eqs. (52) and (53) for the traditional-flap 
and parabolic-flap geometries were obtained by differentiating the section quarter-chord pitching moment 
with respect to flap deflection for each flap type. However, it is perhaps more insightful to consider the 
change in section quarter-chord pitching moment with respect to flap deflection for an equivalent change in 
lift produced by each flap type.

The ratio given in Eq. (59) provides an estimate for the flap-deflection magnitude required for a parabolic 
flap to create the same change in lift as a single degree of deflection of a traditional flap with the same flap-
chord fraction and angle of attack. Therefore, multiplying Eq. (52) by Eq. (59) gives the change in section 
quarter-chord pitching moment for a parabolic flap with respect to the flap deflection that produces the same 
change in lift as a traditional flap, as estimated by thin airfoil theory. This gives

  
( ) ( )( ) ( ) ( )

( )( ) ( ), , , 

3 3sin 2cos 1 1 cos sin 3 sin

6 1 2cos sin 2 cosp
L f

f f f f f f f
m C c c

f f f f

C δ α

π θ θ θ θ θ π θ θ

θ π θ θ θ

 − + + − + − + = −
 + − + + 



         (60)

Predictions from Eq. (60) are included in Figure 7. Note that the parabolic flap generates a larger change in 
section pitching moment than does the traditional flap for an equivalent change in lift.
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theory and the vortex panel method.
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The ratio of the section pitching moment produced by the parabolic flap to that produced by the traditional 
flap for an equivalent change in lift will be termed the equivalent-lift pitching-moment ratio. An estimate 
for this ratio can be obtained from thin airfoil theory by dividing Eq. (60) by Eq. (53), which gives
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        (61)

Because Eq. (53) approaches zero as the flap-chord fraction approaches unity, the ratio in Eq. (61) approaches 
infinity as the flap-chord fraction becomes large. Therefore, to observe the trend suggested by Eq. (61), 
the inverse of Eq. (61) (i.e. 

pf mmm CCR δδ ,,
~~1 = ) is plotted as a function of flap-chord fraction in Figure 10. 

Again, to demonstrate the effects of deflection, results are included for the NACA 0001 airfoil with varying 
deflection magnitudes. To demonstrate the effects of thickness and camber, results are included for the 
NACA 0020, 4401, and 4420 airfoils with small deflections. Typical flap-chord fractions of traditional flaps 
generally range between 0.1 and 0.4. In this range, the traditional flap creates only 70-95% the magnitude 
of pitching moment created by the parabolic flap for the equivalent-lift deflection. As is true for aircraft 
employing traditional flaps, the change in pitching moment as a result of flap deflection can be significant 
and should be accounted for during the design process of any aircraft employing parabolic flaps. However, 
because viscosity can have a significant impact on the pitching moment, the results presented here based on 
ideal aerodynamics should be used with caution.

Conclusions

The geometry of a parabolic flap has been defined here as that produced by a parabolic deflection of the 
flap neutral line aft of a specified hinge point. This geometry can be generated for any arbitrary airfoil using 
the methodology outlined in this paper, provided that the camber line and thickness distributions of the 
airfoil are known. The methodology requires a numerical solver to ensure that the length of the flap neutral 
line does not change with deflection. The resulting parabolic-flap geometry has a camber-line slope that is 
continuous across the hinge point, whereas the camber-line slope of the traditional flap has a discontinuity 
across the hinge point.

Thin airfoil theory has been used to find analytical solutions for the ideal section flap effectiveness and 
change in section quarter-chord pitching moment with respect to flap deflection of the parabolic flap. These 
analytical solutions are given in Eqs. (48) and (52) respectively, and shown in Figure 5 and Figure 7 
respectively, in comparison to thin-airfoil-theory results for the traditional flap. Solutions from inviscid 
computations using a vortex panel method are included to demonstrate the effects of thickness and camber. 
Results show that the ideal section flap effectiveness of a parabolic flap can range from 33% to 50% 
greater than that of a traditional flap, depending on the flap-chord fraction, with larger flap-chord fractions 
producing the largest gains in ideal section flap effectiveness. It was found that thickness and camber can 
have a significant effect on the change in section pitching moment due to flap deflection, but only a small 
effect on the ideal section flap effectiveness.

Estimates for the parabolic-flap effectiveness ratio, equivalent-lift deflection ratio, and equivalent-lift pitch-
ing-moment ratio were obtained from thin airfoil theory and given in Eqs. (50), (59), and (61) respectively. 
Results are shown in Figure 6, Figure 9, and Figure 10 in comparison to vortex panel solutions for NACA 
airfoils demonstrating the effects of camber and thickness. These results show that the parabolic flap typ-
ically requires 65-80% of the deflection of a traditional flap to produce the same change in lift, depending 
on flap-chord fraction and deflection magnitude. Additionally, within the range of traditional flap-chord 
fractions, the parabolic flap can create a change in pitching moment that is 5% to 50% larger than that of 
a traditional flap for the same change in lift, with the largest differences in pitching moment occurring at 
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larger flap-chord fractions. The vortex-panel solu-
tions demonstrate that camber and thickness appear 
to have only a small effect on the equivalent-lift de-
flection ratio, but that the deflection magnitude can 
have a significant effect on this ratio.

The present study used only ideal aerodynamics to 
evaluate the aerodynamic performance of a parabolic 
flap to that of a traditional flap. Ideal-aerodynamic 
estimates neglect viscosity, and therefore do not 
provide insight into either the lift-to-drag ratio, or 
the viscous results of adverse-pressure gradients 
on the airfoil surface. Future work is planned to 
understand these effects through the use of wind-
tunnel measurements, computational fluid dynamics, 
and boundary-layer theory. Although these future 
studies will shed significantly more light on the 
true aerodynamic performance of a parabolic flap in 
comparison to a traditional flap, the results in this 
paper provide the analytical foundation with which 
these flap types can be compared.

Acknowledgements
This work was partially funded by the Air Force 
Office of Scientific Research (AFOSR) Lab Task 
17RQCOR394 with Dr. Jay Tiley as the program 
manager and the AFRL Summer Faculty Fellowship 
Program. This paper has been cleared for public 
release, Case Number: 88ABW-2018-1444.

References
1. Joo J, Marks C, Zientarski L, Culler A (2015) Variable 

camber compliant wing-Design. AIAA-2015-1050, 
23rd AIAA/AHS Adaptive Structures Conference, 
Kissimmee, Florida.

2. Marks CR, Zientarski L, Culler AJ, Hagen B, Smyers 
BM, et al. (2015) Variable camber compliant wing-
Wind Tunnel Testing. AIAA 2015-1051, 23rd AIAA/
AHS Adaptive Structures Conference, Kissimmee, 
Florida. 

3. Nguyen N, Lebofsky S, Ting E, Kaul U, Chaparro 
D, et al. (2015) Development of variable camber 
continuous trailing edge flap for performance of 
adaptive aeroelastic wing. SAE Technical Paper.

4. Kaul UK, Nguyen NT (2014) Drag optimization study 
of Variable Camber Continuous Trailing Edge Flap 
(VCCTEF) Using OVERFLOW. 32nd AIAA Applied 
Aerodynamic Conference, Aviation, Georgia.

5. Abdullah EJ, Bil C, Watkins S (2010) Numerical 
simulation of an adaptive airfoil system using SMA 

Actuators. 48th AIAA Aerospace Sciences Meeting, 
Florida.

6. Woods BKS, Friswell MI (2012) Preliminary 
investigation of a fishbone active camber concept. 
Proceedings of the ASME 2012 Conference on 
Smart Materials, Adaptive Structures and Intelligent 
Systems, Stone Mountain, Georgia.

7. Woods BKS, Bilgen O, Friswell MI (2012) Wind 
tunnel testing of the fish bone active camber morphing 
concept. 23rd International Conference on Adaptive 
Structures and Technologies, China.

8. Vasista S, Tong L (2013) Topology-optimized design 
and testing of a pressure-driven morphing-aerofoil 
trailing-edge structure. AIAA Journal 51: 1898-1907.

9. Lyu Z, Martins JRRA (2015) Aerodynamic shape 
optimization of an adaptive morphing trailing-edge 
wing. Journal of Aircraft 52: 1951-1970.

10. Liu Y, Bai J, Livne E (2017) Robust optimization of 
variable-camber continuous trailing-edge flap static 
aeroelastic action. AIAA Journal 55: 1031-1043.

11. Sanders B, Eastep FE, Forster E (2003) Aerodynamic 
and aeroelastic characteristics of wings with 
conformal control surfaces for morphing aircraft. 
Journal of Aircraft 40: 94-99.

12. Pankonien AM (2015) Smart material wing morphing 
for unmanned aerial vehicles. PhD Dissertation, 
University of Michigan.

13. Abbott IH, Von Doenhoff AE (1959) Theory of wing 
sections. Dover, New York, 111-123.

14. Munk MM (1922) General theory of thin wing 
sections. NACA TR-142.

15. Birnbaum W (1923) Die tragende Wirbelfläche als 
Hilfsmittel zur Behandlung des ebenen Problems 
der Tragflügeltheorie. Zeitschrift für Angewandte 
Mathematik und Mechanik 3: 290-297.

16. Glauert H (1924) A theory of thin aerofoils. 
Aeronautical Research Council, Reports and 
Memoranda 910, London.

17. Glauert H (1926) Thin aerofoils. The Elements of 
Aerofoil and Airscrew Theory, Cambridge Univ 
Press, UK, 87-93.

18. Glauert H (1927) Theoretical relationships for an 
aerofoil with hinged flap. Aeronautical Research 
Council, Reports and Memoranda 1095, London.

19. Abbott IH, Von Doenhoff AE (1959) Theory of Thin 
Wing Sections. Theory of Wing Sections, McGraw-
Hill, New York, 64-79.

20. Karamcheti K (1966) Elements of thin airfoil theory. 
Principles of Ideal-Fluid Aerodynamics, Krieger, 
Malabar, FL, 492-517.

http://michael.friswell.com/PDF_Files/C327.pdf
http://michael.friswell.com/PDF_Files/C327.pdf
http://michael.friswell.com/PDF_Files/C327.pdf
http://michael.friswell.com/PDF_Files/C327.pdf
http://michael.friswell.com/PDF_Files/C327.pdf
http://michael.friswell.com/PDF_Files/C332.pdf
http://michael.friswell.com/PDF_Files/C332.pdf
http://michael.friswell.com/PDF_Files/C332.pdf
http://michael.friswell.com/PDF_Files/C332.pdf
https://deepblue.lib.umich.edu/handle/2027.42/111533
https://deepblue.lib.umich.edu/handle/2027.42/111533
https://deepblue.lib.umich.edu/handle/2027.42/111533
https://aeroknowledge77.files.wordpress.com/2011/09/58986488-theory-of-wing-sections-including-a-summary-of-airfoil-data.pdf
https://aeroknowledge77.files.wordpress.com/2011/09/58986488-theory-of-wing-sections-including-a-summary-of-airfoil-data.pdf
https://digital.library.unt.edu/ark:/67531/metadc65792/
https://digital.library.unt.edu/ark:/67531/metadc65792/


Hunsaker et al. Int J Astronaut Aeronautical Eng 2019, 4:026

Citation: Hunsaker DF, Reid JT, Joo JJ (2019) Geometric Definition and Ideal Aerodynamic Performance of Parabolic Trailing-Edge Flaps. 
Int J Astronaut Aeronautical Eng 4:026

• Page 20 of 20 •ISSN: 2631-5009 |

21. Anderson JD (2011) Classical thin airfoil theory. 
Fundamentals of Aerodynamics. (5th edn), McGraw-
Hill, New York, 338-357.

22. Bertin JJ, Cummings RM (2014) Thin-airfoil theory. 
Aerodynamics for Engineers. (6th edn), Prentice-Hall, 
Upper Saddle River, NJ, 298-317.

23. Katz J, Plotkin A (2001) Small-Disturbance flow over 
two-dimensional airfoils. Low-Speed Aerodynamics. 
(2nd edn), Cambridge Univ Press, UK, 94-121.

24. Kuethe AM, Chow CY (1998) Aerodynamic char-
acteristics of airfoils. Foundations of Aerodynamics: 
Bases of Aerodynamic Design. (5th edn), Wiley, New 
York, 136-150.

25. McCormick BW (1995) Thin airfoil theory. Aerody-

namics, Aeronautics, and Flight Mechanics. (2nd edn), 
Wiley, New York, 73-84.

26. Phillips WF (2010) Thin airfoil theory. Mechanics of 
Flight. (2nd edn), Wiley, Hoboken, NJ, 28-32.

27. Abbott IH, Von Doenhoff AE (1959) Plain Flaps. 
Theory of Wing Sections, McGraw-Hill, New York, 
190-197.

28. Phillips WF (2010) Trailing-edge flaps and section 
flap effectiveness. Mechanics of Flight. (2nd edn), 
Wiley, Hoboken, NJ, 39-46.

29. Phillips WF (2010) The vortex panel method. 
Mechanics of Flight. (2nd edn), Wiley, Hoboken, NJ, 
32-39.


	Title
	Abstract
	Nomenclature
	Introduction
	Geometric Definition of a Parabolic Trailing-Edge Flap 
	Ideal Aerodynamic Performance 
	Ideal section flap effectiveness 
	Section quarter-chord pitching moment 
	Equivalent-lift deflections 

	Conclusions
	Acknowledgements
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	References

