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Abstract
In the present paper, we study the three-body problem in the case where two bodies have equal 
masses, which imply the existence of a manifold of symmetric motions. We find conditions of 
existence of bounded symmetric motions. These conditions can be useful for elucidating those 
key circumstances that cause the existence of oscillating final evolutions. For the analysis of 
boundedness of motions, both the structure of the manifold of symmetrical motions and the 
integrals of energy and angular momentum are essential.
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the general equations of motion of the three-body 
problem, giving them the desired shape already in 
the process of research.

So, in the study of symmetric motions, we will 
first of all rely on the basic equations of the three-
body problem representing them in the form [7]:
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Where the prime symbol means differentiation 
with respect to

Introduction
Symmetric motions in the three-body problem 

are usually associated with the problem of exis-
tence of oscillating eventual evolutions considered 
in the well-known work by Sitnikov [1]. Although 
that work is mainly devoted to the restricted ellip-
tic three-body problem, it gave impetus to further 
research of the general three-body problem [2-4]. 
All the more, the possibility of existence of oscillat-
ing motions within the framework of the general 
three-body problem was admitted by Chazy [5].

In this paper, continuing author's research [6], 
we expand their spectrum somewhat.

Turning to the consideration of symmetric mo-
tions, we will not immediately write down the 
equations of motion that correspond to the man-
ifold of symmetric motions, but we will start from 
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 is a parameter that has the dimension of the 

unit of length. In equations (1.1), we have 0/i i r=ρ r ,i = 1,2,3, where ri are the radius vectors of points 
in the inertial reference frame with the origin at the center of mass of mi. The parameter ro having the 
dimension of the unit of length is included into the expression of τ in order to deal with dimensionless 
quantities since it is very convenient from the viewpoint of our subsequent study.

In what follows, we essentially use the conservative property of system (1.1), i.e. the existence of the 
energy integral 

3
2

 < 

1  -  =  = ,
2

i j
i i

i i j ij

h const
µ µ

µ ′∑ ∑ρ
ρ                    (1.2)

and the vector integral of angular momentum

( )
3

1    = Ci i
i

µ ′×∑ ρ ρ .                                  (1.3)

We assume that   0C ≠ .

Further, without loss of generality, we also assume that the equality
3

 = 0i i
i

µ∑ ρ                        (1.4)

is satisfied; This means that the origin of the reference system is located at the center of mass of the 
material points (bodies).

On the Manifold of Symmetric Motions of the Three-Body Problem
As is shown in [6], if two masses are equal, then we arrive at the manifold of symmetric motions

12 12
12 33 3

12 13

 = - 2  - ,µ µ′′ ρ ρ
ρ

ρ ρ
                      

(2.1)

3
3 3

13

 = - ,′′ ρ
ρ

ρ

Where 13 23 1 2 3 = ,  =  = ,  2  +  = 1,µ µ µ µ µρ ρ and the following equality is satisfied:

( )2 2 2 2
3 12 13 =   + 4µ −ρ ρ ρ                        (2.2)

A distinctive feature of the manifold of symmetric motions of system (2.1) is the validity of equalities

12 12 1   = C ,′×ρ ρ 3 3 2   = C ,′×ρ ρ                     (2.3)

Where 1 2,C C  are constant vectors. This enables us to perform a qualitative study of system (2.1) given 
that

2
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and reduce it to the following system with two degrees of freedom:

2
2 2 12
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12 13

4 = 2  -  - 2 ,ρµν µ
ρ ρ

′′ρ                      (2.6)

2
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3 3 3

13

 = 2  - 2 ρν
ρ

′′ρ

If C2 = 0, then system (2.6) admits a motion, for which the body having the mass 3µ oscillates along an 
axis passing through the center of mass of the system and perpendicular to the plane of movement of the 
other two bodies with equal masses. It is the case that was considered by Sitnikov [1].

We arrived at system (2.6) based on equations (1.1). We now use the distance equations [8], taking 
into account the relations obtained in this article:

12 13 12 13 12 23 12 23 13 23 13 23 -  =  -  =  - ′ ′ ′ ′ ′ ′ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ                (2.7)

If we notice that in the case under consideration
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Which follows from equations (1.1) in the form
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and, in turn, the equalities
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are valid, then we obtain the manifold of symmetric motions in the form
2
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Where,

2 2
12 12 13 13

12 13

2 2 =  - ,   =  - E Eν ν
ρ ρ  .             (2.12)

Taking into account equalities (2.2) - (2.5), as well as the equality
2 2 2 2 2
3 12 13 =   + 4 ,ν µ ν µ ν−                   (2.13)

We see that this is also a system with two degrees of freedom. In particular, its first two equations form 
a closed system. The remaining two equations are its consequence.

The energy integral for system (2.11) has the form
2

12 3 13 + 2  = 2E E hµ µµ                  (2.14)

Further, we restrict ourselves to such symmetric motions of system (2.11) (or (2.6)) that belong to the 
set

( ){ } = , :    =  < 0T U h′Ω −ρ ρ                 (2.15)

On Stationary Symmetric Motions
Based on the structure of the manifold of symmetric motions both in the form (2.6) and in the form 

(2.11), we see that the stationary symmetric motions, i.e. movements for which the distances 12 13 3, ,ρ ρ ρ
are constant, correspond to the equilibrium positions of the systems of equations (2.6) or (2.11) respec-
tively. Next, we dwell on the system (2.11). Taking into account the energy integral (2.14), we rewrite it 
in the form

( )2
2 2 212 12 12

12 32 2 3
12 12 12 13

C 4 = 2  +  -  - 2 ,
4

ρ ρµρ µ
ρ ρ ρ ρ

′′
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                    (3.1)

( ) ( )
2

2 2 212 1 32 12
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C 2 - 2 2 =  -  +  +  +  + 
4

h ρ µ µ ρµρ µ
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′′
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.

To determine the equilibrium positions, we arrive at the equations
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ρ ρµ µ
ρ ρ ρ ρ
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( ) ( )
2

2 2 212 1 3 12
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Given the fact that in the equilibrium position 
2
12  = 0ρ ′ , we rewrite Eqs. (3.2) in the form

2

34 3 3
12 12 13

4 12  -  - 2  = 0,c µ µ
ρ ρ ρ

 
 
                     (3.3)

( )2
3

2 4 3 2 3
3 12 3 12 3 12 12 13 13

2 - 2 1 1 1 2 1 -  +  +  +  = 0,h c µ µµ µ
µµ ρ µ ρ µ ρ ρ ρ ρ

 
 
 

Where, 22
1 = Cc . Thus, we have a system of two nonlinear algebraic equations for the variables 121 ρ

and 131 ρ . It is required to prove that this system has at least one positive solution, given that 121 ρ and 
131 ρ are positive values in their meaning.

Solving the first equation of system (3.3) with respect to 3
131 ρ and substituting the resulting expression 

in the second equation of this system, we obtain

2
12 3 3 12 13

1 1 22  +  +  = 0h µ
ρ µµ µ ρ ρ

 
 
 

                    (3.4)

Since in the case under consideration, 121 ρ is positive, then on the basis of (3.4) we have

13 3 12

1 1 1 = -  +  ,
2

h µ
ρ µ µ ρ

 
 
 

                      (3.5)

hence

2
12

1 2 < - h
ρ µ                                     (3.6)

At the same time, on the basis of the first equation of system (3.3), we have

2
12

1 2 > 
c
µ

ρ                                               (3.7)

From the compatibility condition for inequalities (3.6) and (3.7) we obtain

2 3 +  < 0hc µ                         (3.8)

Now we substitute the value 131 ρ , which is expressed by the right-hand side of equality (3.5), into the 
first equation of system (3.3). As a result, we arrive at the equation

( )2 3 2 4 4 2 2 3 4 2 2 2 3
3 38  +  - 16  + 6  + 12  + 8  = 0,c x x hx h x hµ µ µ µ µ µ µ                       (3.9)

Where, 121x ρ= .

Consider the left side of equation (3.9), which we denote by P4(x), for 2 = 2x cµ and 2 =  2 ,x h µ−  
respectively. As a result, we get
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( )32 3
4 2 6

2 8 =  + ,P hc
c c
µ µ 

 
                  (3.10)

( )
2 3

2 33
4 2 5

2  = 128  + ,hhP hcµ µ
µ µ

 
− 

 
 

             
(3.11)

As can be seen from equalities (3.10) and (3.11), when passing from the value 2 = 2x cµ to the value 
2 =  2 ,x h µ−  the polynomial P4(x), changes sign. Therefore, equation (3.9) has a positive root, which, 

given (3.5), indicates the presence of a positive solution to system (3.3).

Thus, equalities (3.6), (3.7), (3.10) and (3.11) allow us to obtain the following

Assertion 1. The manifold of symmetric motions (2.11) (or (2.6)) admits stationary motions (for h < 0  
and 2   0C ≠  ), if and only if the condition is satisfied:

2 3 +  < 0hc µ .

Necessity, as we could see above, follows from inequalities (3.6) and (3.7), sufficiency follows from 
equalities (3.10) and (3.11).

Since the distance 3ρ in the case under consideration in accordance with (2.2) is constant, then, as we 
see, in addition to the oscillatory motion of a body with mass 3µ there is also its rotational motion when

2   0C ≠ .

An Assertion on Boundedness of Symmetric Motions
For our further goals, we use some results on the two-body problem presented in [9]. Those results 

will be applied to the case where the masses of bodies are equal. In the framework of this case, we use r 
instead of 12ρ and r instead of 12ρ respectively.

Let us write down the equation for r in the form

2 2 2 = 2   ,r
r

ν′′ −                          (4.1)

Where,
2 2

2 2 2 2
2 2

  
          

r r cr r r
r r

ν
∗′×

′ ′ ′= = + = +                                (4.2)

The energy integral is represented as

2 2 2    2   r h const
r

µ  ′ − = = 
 

   
                   

(4.3)

Next we use the known equalities for the two-body problem

( )2

1 1  1  cos  ,e f
r c∗= +    

                    
(4.4)

2
2 2

2  sin ,er f
c∗

′ =    
                                 

(4.5)

2 2
2

1  1    2 cos  ,e e f
c

ν ∗
 = + +       

                
(4.6)

Where the constant
2 2

2

  2  c he µ
µ

∗+
=



                        (4.7)

is the eccentricity of the elliptical orbit, f  is a true anomaly.
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We recall some key definitions that we will use below.

Definition 1. We say that the motion ( ) ( )1 2 3  , , τρ τ ρ ρ ρ= of system (1.1) is distal if the following in-
equality is satisfied:

( ) 1  ij cτ ≥ρ  ,Rτ∀ ∈   < i j,∀  10 <  = c const
Definition 2. In accordance with [10], we say that a fixed pair of mass points ( ), ,  < i j i jµ µ , of system 

(1.1) is Hill stable if the following inequality is satisfied:

( ) 2  ij cτ <ρ  ,Rτ∀ ∈  20    c const< =

According to [6], if h < 0 and 1   0,C ≠  then the symmetric motions belonging to the manifold (2.1) are 
distal and, in addition, the pair of material points ( ),µ µ is Hill stable.

Assertion 2. Let ( ) ( )1 2 3  , , τρ τ ρ ρ ρ= be a symmetric motion of system (2.1) belonging to the set Ω  .

Then, if
3 2    0,c hµ + ≤                         (4.8)

Where
22

12 12 =   ,c ′×ρ ρ   ,c const=                      (4.9)

then the symmetric motion is bounded.

Proof. Further, the energy integral is conveniently written as

( )
2

2 2 2 3
3 3 13

12 13

41 2 +  -  -  = 2
2

hµµµµ µ
µ ρ ρ

′ ′ρ ρ               (4.10)

Rewriting it in the form

2
12 122 2 23 3

12 32
12 12 13

  1 2 +  -  +  - 4  = 2
2 2

h,µ µµµ ρ
µ ρ ρ µ ρ

  ′×
′ ′  

    

ρ ρ
ρ           (4.11)

We consider it as a quadratic equation with respect to the value 121 ρ  . As a result, we obtain
2 22

2 23 312
3

12 12 13

1 1 -  2      -  4  -  2   0
2 2 2

c hµ µµµρµ µ ρ
ρ ρ µ ρ

   ′
′+ + =  

   
          (4.12)

In view of (4.12), we have
22

3 2 23 312
32 2

12 13

1 2 2            4
2 2 2
cc h

c c
µ µµµρµ µ ρ

ρ µ ρµ
 ′

′= ± + − + − 
 

 
                      

(4.13)

and the resulting equality is represented as

22
3 2 23 312

32 2
12 13

1 2 2             4
2 2 2
cc h

c c
µ µµµρµ µ ρ

ρ µ ρµ
 ′

′− = ± + − + − 
 

         (4.14)

Under the conditions of the assertion 2, the left-hand side of equality (4.14) is always a real number.

Suppose now that the considered symmetric motion ( ) ( )1 2 3  , , τρ τ ρ ρ ρ= is not bounded under the 

conditions of the assertion. Then there exists a sequence }{ kτ ,k = 1,2,3,…, such that

( ) ( ) ( )13 13 13lim  = , lim  = ,    = .k k k kk k
τ ρ τ ρ τ τ

→∞ →∞
∞ ∞ ρ                        (4.15)

We first consider the case of condition (4.8), when the strict inequality
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3 2    0c hµ + <

holds. Then, in accordance with (4.15), for the sequence }{ kτ , there exists a sufficiently large number 
k such that ( )131 kρ τ becomes an arbitrarily small number, and, as a result, the right-hand side of equality 
(4.14) becomes imaginary. We get a contradiction.

Let now
3 2    0c hµ + =

Then, if we assume that motion is unbounded in this case, then (4.15) holds, and, consequently, in 
accordance with equations (2.1), ( )12 τρ approaches an elliptic Keplerian motion as   k → ∞  And then, 
taking into account (3.5), we see that the term 2

12ρ′ under the sign of radical in (4.14), which is associated 
with the pair ( ),µ µ , is representable in the following form:

2
2 2

12 2  sin ,e f
c

ρ′ =






                 (4.16)

Where ,e c  and ( )  f f τ=  have the same meaning as e,c* and f in equality (3.5).

Since for the elements of the sequence }{ kτ we have

( )13

1   0,
kρ τ

→   
               

(4.17)

as   k → ∞ , then the limit expression for the sum of terms under the sign of radical in (4.14) takes the 
form

22 2
2 2 2 23 3 312

3 32 2
13

    -  4    sin   
2 2 2 4
c ec f

c
µ µµ µµρ µρ ρ
µ ρ µ

∞

   ′   ′ ′− + = − +    
   







 
         

(4.18)

We now consider equality (4.18) in more detail. The function 2sin f in its right-hand side is equal to one 
for ( )  2   1 2f i π= +  , i = 0,1,2,…, and since we study the motions belonging to the set Ω , the right-hand 
side of equality (4.18) becomes negative for 2sin   1f = .

As noted above, the pair of material points ( ),µ µ ,is Hill stable on manifold (2.1) and the motion in 
question is distal, which makes the velocities of the material points of system (2.1) limited. The period 
of the elliptic Keplerian motion approaching ( )12 kρ τ as   k → ∞  is finite. Within this period, the function

2sin f , being continuous, takes all its values. Thus, taking into account (4.17) and (4.18), we get every 
reason to assert that there exists a value ( )kτ ∗ such that

( )

22
23 312

3
13  = 

  +  - 4
2 2 2

k

c

τ τ

µ µµµρ
µ ρ ∗

  ′
′−  

  
ρ

becomes negative and, as a result, the right-hand side of equality (4.14) becomes imaginary. As we 
noted above, under the conditions of the assertion 2, the left-hand side of equality (4.14) is always valid. 
We arrive at a contradiction, whence we conclude that the assertion 2 is true.

As it is implied by the scheme of proof of assertion 2, boundedness of symmetrical motions remains to 
be true also in the case when the constant 3 2  c hµ + is positive, but is quite small.

So, if the oscillating motions exist, then they can be realized only if the condition: 3 2    c hµ δ+ > is 
satisfied, whereδ is a small positive number. This fact may be of some practical interest.

Conclusion
In our proof of the assertion 2 on boundedness of symmetric motions, a key point is the fact that 

in case of moving the third body to infinity, under the conditions of the assertion 2, the pair ( ),µ µ ac-
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quires the properties of an elliptic Keplerian mo-
tion. Moreover, as follows from the proofs of the 
assertions 1 and 2, the boundedness of symmetric 
motions is essentially associated with the absolute 
value of the angular momentum of the pair ( ),µ µ  
and the constant of the energy integral h , as well 
as with their relation.
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