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Abstract
In the Southern North Sea, 3D seismic data had been widely acquired to explore for hydro-
carbons, but interpretations of these datasets until now focus mainly on the deep exploration 
targets of the petroleum companies. Less attention is given to shallow sediments. But these 
sediments often contain channels that can serve as efficient stratigraphic traps for shallow gas. 
Thus the mapping and identification of these shallow channels and defining their infill lithology 
is important considering the abundance of shallow gas and its significance both as a ressource 
and hazard. In this study, seismic spectral decomposition technique has been used to delin-
eate shallow thin channel geometry in a 3D seismic data acquired in the Dutch sector of the 
North Sea. The concurrent interpretation of curvature and coherence cubes with seismic facies 
analysis based on reflection terminations and geometry, amplitude and continuity enables the 
discrimination between shale versus sand filled channels. The results of the spectral decom-
position show two distinct low sinuosity channel features in NNE-SSW direction but becomes 
diffuse towards the North. The strong negative curvature anomaly along the channels axes ob-
served in the most negative curvature attribute implies that the sediments within the channels 
have undergone more compaction. These strong negative curvature anomalies are interpreted 
to be due to differential compaction of shale filled non productive channels. 
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Introduction
In the Southern North Sea, an extensive 3D seis-

mic data had been acquired to explore for oil and 
gas in the Upper-Jurassic and Lower Cretaceous by 
the petroleum companies. But for most 3D seismic 
datasets, interpretations are focused mainly on the 
deep exploration targets of the petroleum compa-
nies. Less attention is given to shallow (younger) 

sediments. Presumably, this may be due to fact that 
these sediments are far above the main hydrocar-
bon findings on one hand, and on the other hand, 
their location too deep below the seabed for re-
search by others than oil companies [1]. But these 
shallow (younger) sediments often contain chan-
nels that could serve as potential reservoir units 
cappable of trapping shallow gas. The mapping and 
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identification of these shallow channels and defin-
ing their infill lithology in a fluvio-deltaic system is 
thus important in exploration and production. This 
is because these channels could serve as tools for 
shallow geohazard analysis [2,3]. For instance, in a 
gas filled shallow stratigraphic trap, the gas can be 
a hazard and a risk when drilling a borehole [4-6]. 
Additionally, the occurrence of a shallow gas filled 
stratigraphic trap can be an indication for the pres-
ence of deeper hydrocarbon reserves, and thus 
an exploration tool. Besides, some of the shallow 
gas fields are even big enough to be considered as 
commercial gas fields [5].

Channels are generally visually close to or below 
seismic resolution [7,8], so thin to their surrounding 
geometry that their subtleties are nearly invisible 
in traditional seismic data. Thus, delineating thin 
reservoir sands from conventional seismic data had 
always been a challenge. Recent innovations such as 
coherence technology [9] and other edge sensitive 
attributes [10] are common methods employed 
in mapping boundaries of these geological subtle 
targets (channels). Although coherence images and 
edge sensitive attributes reveal channels edges, 
a key limitation in these techniques is that they 
cannot delineate the channel’s thickness [11].

Spectral decomposition is a recent seismic 
interpretation technology that reveals otherwise 
hidden geological information and thus is being 
used extensively as an excellent tool for mapping 
channels [12]. In spectral decomposition, reflection 
from a thin bed has a peculiar expression in the 
frequency domain that gives an indication of the 
temporal bed thickness. It is a powerful seismic 
imaging and mapping tool that provides the 
interpreter useful quantitative information for 
determining bed thickness [12], visualization of 
stratigraphy [13] and detection of hydrocarbon 
[14,15] to a level that was previously impossible. 
Spectral decomposition is also an effective tool 
in enhancing geohazard analysis as it is sensitive 
to wavelet, reflectivity, tuning and attenuation 
changes [2]. In spectral decomposition, the seismic 
data is converted from the time domain to the 
frequency domain and decomposed into frequency 
components. Studying the individual frequency 
components and comparing their responses 
provides significant insight into the subsurface 
geology. The time-frequency mapping process is a 
non-unique process; as a result, there are several 

methods for carrying out time-frequency analysis 
of non-stationary signals. Popularly used spectral 
decomposition methods include Fast Fourier 
Transform (FFT), Continuous Wavelet Transform 
(CWT), S-transform (ST), and Matching Pursuit 
decomposition (MPD). It is important to note that 
each method has its strengths and weaknesses 
[16,17].

Several published works have discussed thor-
oughly various aspects of the post-stack time mi-
grated 3D seismic dataset provided by dGB Earth 
Sciences in the F3 block. Some of these studies car-
ried out in the study area are on delineation of geo-
logical features using spectral decomposition [18], 
independent spectral analysis [19], porosity predic-
tion from seismic inversion [20] etc. Although these 
studies and others provide very rich literature on 
various aspects of the dataset, studies on predic-
tion of the infill lithology of fluvio-deltaic channels 
particularly in the shallow (younger) sediments 
distinguishing channels filled with sand from those 
filled with shale are lacking. In this study, we have 
used attribute-assisted interpretation workflow to 
study the shallow channel geometry and infill li-
thology. We have applied FFT and CWT methods of 
spectral decomposition and seismic attributes (co-
herence and curvature) to a 3D seismic data set ac-
quired in the upper Cenozoic fluvio-deltaic system 
in the block F3 in the North Sea basin to delineate 
shallow thin channel geometry and distinguish be-
tween intrachannel shale versus sand lithologies. 
The intrachannel lithologies predicted using the 
seismic attributes were validated using well logs 
available in the area in conjunction with other lines 
of evidence. 

Geological setting
The study area (F3 block) is located in the Dutch 

sector of the North Sea. Much of the entire North 
Sea region in the Cenozoic era was a thermally sub-
siding epicontinental basin that was confined by 
land masses [21]. Sedimentation rates during the 
Neogene outpaced the subsidence rate, resulting 
in rapid deposition and shallowing of the North Sea 
basin. An extensive fluvio-deltaic system (Eridanos 
delta) prevailed in the basin during the late Ceno-
zoic Period [22,23], draining the Fennoscandian 
High and the Baltic Shield. According to Overeem, 
et al. [23], the Eridanos drainage developed due 
to the Neogene uplift of the Fennoscandian Shield 
and accelerated subsidence of the North Sea Basin 
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Spectral decomposition methods: The thin-bed 
tuning effect is the reason for the application of 
spectral decomposition method on a seismic data. 
The thin-bed tuning effect occurs when reflections 
from top and down layers have a constructive in-
terference. In this instance, the peak amplitude re-
sponse will occur at ¼ wavelength of the dominant 
period and layer thickness less than this value will 
not be detected in the seismic section [28]. Laugh-
lin, et al. [29] illustrated the relationship between 
tuning thickness and frequency using a wedge syn-
thetic seismic model (Figure 2). Figure 2a shows a 
thickness increase from 0 to 30 m at the left side, 
while the right side indicates amplitude tuning in 
three different frequencies. Figure 2b shows the 
basis of the spectral decomposition technique, 
high frequency (36 Hz, green colour) delineates the 
thinner part of the paleo channel and the low fre-
quency (15 Hz, red colour) shows the thicker part 
[30,31].

Fast Fourier Transform (FFT): The Fourier 
transform ( )F ω  of a time-domain seismogram 

( )f t  is expressed mathematically as:

( ) ( ) = , i tF f t e ωω   

             ( )= i tf t e dtω
∞

−

−∞
∫ 			          (1)

Where t is time. Although a non-stationary 
signal when converted into the frequency domain 
via the Fourier transform method gives the 
overall frequency behaviour of the signal; such 

that occurred at the same time. The drainage sys-
tem (Eridanos delta) started when the Scandina-
vian Shield was uplifted during the Oligocene [24].

Sales [25] reported that the uplift rate increased 
during the late Miocene and also in the early 
Pliocene [26]. Due to the late Miocene uplift, high 
sediment influx filled the northern offshore regions 
of the Dutch Sector. The increasing sediment 
load resulted in a differential load throughout the 
region. As a result, the buried Permian Zechstein 
salt started moving in the region forming several 
localized unconformities within the Pliocene 
interval that are underlain by salt domes.

The Cenozoic succession consists of two main 
packages, separated by the Mid-Miocene Uncon-
formity [27] (Figure 1). The lower package consists 
predominantly of relative fine-grained gradational 
Paleogene sediments [27], while the package above 
the unconformity is largely a progradational deltaic 
sequence that are made up of coarse Neogene sed-
iments. The package above the unconformity can 
be subdivided into three sequences (Units 1, 2, and 
3) corresponding to three phases of delta evolution 
(Figure 1). Generally, in this package, conspicuous 
large-scale sigmoidal bedding pattern, downlap, to-
plap, onlap and truncation structures are observed. 
The base of Unit 2 is the zone of interest for this 
study. Unit 2 is the delta forest with a coarsening 
upward sequence [23] and the age of this unit is 
estimated to be Early Pliocene.

Theoretical foundation

Figure 1: Sketch of the Neogene fluvio-deltaic system in the Southern North Sea [25].
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a transformation is not adequate for analysing 
seismic data (a non-stationary signal), whose 
frequency content is not constant but varies with 
time. By taking short segments of the signal which 
are considered stationary parts (i.e., windowing the 
signal) and then performing the Fourier transform 
for each segment, provides the frequency content 
of the signal at that time period [16,32]. When this 
time window is shifted appropriately, it is possible 
to extract the frequency content of the signal and 
thus produce a 2-D representation of frequencies 
versus time. This 2-D representation is commonly 
known as short-time Fourier transform (STFT). The 
implementation of FFT is based on Short Window 
Discrete/Fast Fourier Transform.

The STFT is given by the inner product of the 
signal ( )f t  with a time-shifted window function 

( )tφ  expressed mathematically as:

( ) ( ) ( ){ }

( ) ( )

,  = ,

                   =

i t

i t

STFT f t t e

f t t e dt

ω

ω

ω τ φ τ

φ τ
∞

−

−∞

−

−∫
	        (2)

Where the window function φ  is centered at 
time t τ= , with τ  being the translation parameter, 

and φ  is the complex conjugate of φ .

Continuous Wavelet Transform (CWT): The 
continuous wavelet transform (CWT) introduced by 
Morlet, et al. [33] is another method used to ana-
lyze the time-frequency content of a signal. Unlike 
the STFT where the window function has a fixed 
length, the CWT uses a variable window length. 
If the length of the interval on which the window 
function is non zero increases, the time resolution 
decreases, and the frequency resolution increases. 
On the other hand, when the length of the inter-
val decreases, the time resolution increases and 
the frequency resolution decreases. The foregoing 
means that by increasing the frequency resolution, 
the time resolution will decrease and vice versa 
[34].

The wavelet transform consists of wavelets 
which are functions defined as ( ) ( )2  L ,tψ ∈ ℜ  
that have zero mean, which is localized in both 
time and frequency [15]. Each wavelet basis 
is generated by dilating and translating a two 
parameter function known as the mother wavelet, 

( )tψ . Given a wavelet basis, we can represent all 
functions in the basis by translations and scalings of 

Figure 2: a) Relation between tuning thickness and frequency [31] and; b) Results of spectral decomposition at 
36 Hz, 15 Hz, maps and channel thickness detected with variable frequency [41]. Low frequency slices indicate 
high thickness (green lines) and high frequency slices indicate low thickness (red lines).
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publicly available by dGB Earth Sciences through 
OpendTect share seismic data repository [36]. The 
F3 is a block located in the North-eastern part of 
the Dutch sector of the North Sea. The 3D seismic 
data is made up of 650 inlines and 950 crosslines 
with a line spacing of 25 m in both inline and 
crossline direction. The sampling rate is 4 ms with 
a total data length of about 1.8 s. Figure 3 shows 
a vertical seismic section (in line 250) with gamma 
ray logs overlaid on the section in the respective 
well locations (F02-1, F06-1, F03-2 and F03-4). The 
study area is the horizon (in red) at the base of Unit 
2 located between 800 ms and 1100 ms (Figure 3). 
Because the original F3 dataset is noisy, only Dip-
steered Median Filtered dataset was used as input 
data in this study.

Since this study is aimed at delineating channels 
and to distinguish between sand-fill from shale-fill 
channel system in the study area, time slices of the 
3D seismic volume was carried out between 1000 
ms and 1055 ms, and the geological features in 
each time slice was analysed. In time slice 1007 ms 
(Figure 4a), a channel like feature having a NNE-SSW 
pattern was observed, and extended towards the 
southern part in time slices 1028, 1037 and 1055 
ms respectively (Figure 4b, Figure 4c and Figure 
4d). At time slice 1055 ms, only a small part of the 
feature was observed and become indiscernible in 
time slice 1064 ms (Figure 4d). From the above, it 

the mother wavelet,

( ),
1 = ttσ τ

τψ ψ
σσ
− 

 
 

			          (3)

Where , 0,  τ σ σ∈ℜ ≠  and τ  are the dilation or 
scale and translation parameters. In Eq. 3, as the 
value of  σ  increases, the wavelet is compressed, 
its spectrum dilates and the peak frequency 
shifts to a higher value. Conversely, as the wavelet 
is scaled such that it dilates, the value of  σ  de-
creases, its spectrum is compressed and the peak 
frequency shifts to a lower value [35]. The CWT is 
defined as the inner product of the family of wave-
lets ( ), tσ τψ  with the signal ( )f t  given as:

( ) ( ) ( ) ( ),
1F , ,W

tf t t f t dtσ τ
τσ τ ψ ψ

σσ

∞ −

−∞

−  = =     ∫      (4)

Where ψ
−

 the complex is conjugate of ψ  and 
( )F ,W σ τ  is the time-scale map (scalogram). At each 

scale (i.e., for each value of σ ) the kernel wavelet 
is scaled by a factor 1/σ  and translated by τ  to 
produce the wavelet coefficients ( )F ,W σ τ . Useful 
wavelets commonly used in wavelet transform are 
Morlet, Gaussian and Mexicat-Hat.

Materials and Method
The dataset used in this study is a post-stack 

time migrated open source 3D seismic dataset that 
was acquired in the F3 block covering an area of 
approximately 16 × 23 km2 to explore for oil and gas 
in the Upper Jurassic and Lower Cretaceous made 

Figure 3: Vertical seismic section (inline 250) showing the mapped seismic horizon (red line) and the location of 
wells and the gamma ray logs of each well.
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scales simultaneously i.e., higher frequencies reveal 
features of more detailed character, whereas lower 
frequencies those which are more coarse. In using 
the CWT technique for spectral decomposition, 
the choice of the wavelet is important as it affects 
the output result [35,37]. As a result, we tested 
all three mother wavelets i.e., Morlet, Gaussian 
and Mexican-Hat wavelets to determine which 
wavelet would give better resolution. Figure 6 
shows comparison of the resolution of the channel 
features of the three mother wavelets at 42 Hz 
frequency.

Although the resolution of the Mexicat-Hat and 
Gaussian mother wavelets appears to be similar 
(Figure 6), the Gaussian wavelet resolution of the 
channel features is slightly superior to that of the 
Mexican-Hat wavelet. Hence the Gaussian wavelet 

implies that a channel system existed between 1007 
and 1055 ms which shows maximum prominence 
at 1028 and 1036 ms. Based on this, the horizon 
shown in red was picked for analysis (Figure 5a and 
Figure 5b).

We also analysed the amplitude spectrum of 
the data (Figure 5c). We define three dominant 
frequencies from the amplitude spectrum for 
RGB multi-colour display. The three frequencies 
were chosen such that they represent the low (28 
Hz), middle (42 Hz) and high (60 Hz) frequency of 
the seismic bandwidth around the horizon. The 
three frequencies were then output as a single 
RGB blended full colour image. This is important 
because mixing outputs of different frequencies 
enables us to analyse results that depict different 
geological features related to different geometrical 

Figure 4: Time slices a) 1007 ms; b) 1028 ms; c) 1037 ms; d) 1055 ms; e) 1064 ms (red oval shape indicate the 
channel like feature. This feature is not delineated in time slice 1064 ms).
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on both the FFT and CWT (Figure 7).

In the spectral images shown in Figure 7, we ob-
served that some parts of the channel are resolved 

was chosen as the ideal mother wavelet for this 
data. In carrying out the spectral decomposition, 
we applied the low, middle and high frequencies 

Figure 5: a) Display of inline 250 and the mapped seismic horizon shown in red; b) Colour blended display of the 
mapped horizon shown in a; (c) Amplitude Spectrum of inline 250 showing the seismic bandwidth.

42 Hz Morlet 42 Hz Mexian Hat 42 Hz Gaussian

Figure 6: Comparison between the three mother wavelets at 42 Hz frequency. The Gaussian wavelet gives better 
resolution of the channel features (indicated with red arrows) than the Morlet and the Mexican Hat wavelets.
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frequency (low frequency), 42 Hz frequency (mid 
frequency) and 60 Hz frequency (high frequency) 
volumes (Figure 8a). We used RGB colour-blending 
technique to display the multiple spectral compo-
nents in a single ‘full colour’ image. Figure 8b dis-
plays RGB colour blending of the frequencies 28 Hz 
(red), 42 Hz (green) and 60 Hz (blue). In addition to 
FFT and CWT, we also generated coherence attri-
bute image. The coherence attribute also known as 
similarity is an effective tool in determining lateral 
changes in the waveform and enables the mapping 

better at low frequency, some at mid frequency 
and others at higher frequency. However, at 42 
Hz frequency, a clearer image of the channel is ob-
served. This frequency at which the channel geom-
etry is clearly pronounced is the tuning frequency. 
Since different parts of the channel features are 
resolved at different frequencies, it was consid-
ered that the channel geometry can be obtained 
in its complete form when the different frequen-
cies are stacked together. Thus, a stacked frequen-
cy volume was obtained by summing up the 28 Hz 

Figure 7: Comparison between FFT and CWT a) 28 Hz FFT and; b) 28 Hz CWT; c) 42 Hz FFT and; d) 42 Hz CWT; e) 
60 Hz FFT and; f) 60 Hz CWT.
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in Figure 7. The comparison is to enable verify po-
tential differences between the methods. In Figure 
7, two significant distinct channel features are ob-
served, particularly by the frequency of 42 Hz and 
are shown using red circles. The general direction 
of the channels observed is NNE-SSW and exhibit 
low sinuosity. Though the channels shape and low 
sinuosity are revealed by both algorithms, the CWT 
algorithm enhances the channel features better, 
the FFT results were considered rather poor. We 
attribute this behaviour to the length of the time 
window used for the FFT decomposition process. 
This is because the length of the time window used 
for the FFT decomposition is of paramount impor-
tance and the output of the FFT decomposition is 
always dependent on this characteristic [44].

In using different frequencies, features of differ-
ent scales are separated. High frequencies delin-
eate smaller features, whereas low frequencies de-
lineate more coarse structures. This effect is visible 
by comparing Figure 7a, Figure 7b and Figure 7c. 
Figure 7d, in its left southern part, there is a more 
pronounced sign of the channel continuity (indicat-
ed with red circle) that was barely visible with low-
er frequencies especially with the FFT algorithm. 
We believe that the channel’s width and thickness 
are smaller in this part than those which are visible 
for lower frequencies. Additionally, the channel on 
the right (Figure 7e and Figure 7f) appears to have a 
branch towards the southern part (indicated with a 

of lateral changes that might occur in stratigraphy 
[38].

Sandstones and claystones are the main infill 
rock types of paleo channels [39]. Each of these 
lithotypes has different responses to compaction, 
hence the lateral changes that accompany com-
paction of a rock volume as it lithifies in a channel 
depends on the type of lithology [40,41]. Because 
shales compact faster than sand [40], a channel 
filled with sand and suspended in a shaly matrix 
may look like a mound or ‘structural’ high while a 
channel that is filled with shale in a sandier inter-
fluve may appear as structural low [41-43]. Such 
patterns are exploited as lithologic indicator. Since 
coherence and curvature attributes are sensitive to 
tectonic deformation including incisement and dif-
ferential compaction of stratigraphic horizons [35], 
we have used the coherence and curvature attri-
butes in a complementary manner through co-ren-
dering to discriminate shale versus sand lithologies 
based on differential compaction of the channels 
relative to their edges. In this approach, coherence 
attribute was used to enhance the channel edges, 
the most post-positive curvature attribute was used 
to delineate likely levees and flanks of the channels 
(red) while the most - negative curvature attribute 
delineates the edges of the channel (blue) [40-43].

Results and Discussion
Results of the spectral decomposition compar-

ing between FFT and CWT algorithms are shown 

Figure 8: (a) Stacked frequency volume of frequencies 28 Hz, 42 Hz and 60 Hz; (b) RGB colour blending of fre-
quencies 28 Hz (red), 42 Hz (green) and 60 Hz (Blue).
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most-negative curvature volumes computed from 
the picked horizon.

Spectral decomposition analysis is an important 
reservoir imaging tool that helps in delineating 
subtle geological features such as channels. In 
this study, the Fast Fourier Transform (FFT) and 
Continuous Wavelet Transform (CWT) are used 
in delineating these geological features in the 
F3 block in the North Sea. The results show two 
distinct channel features that are significant in 
terms of hydrocarbon exploration and production. 
This is because nonproductive (shale filled) and 
productive (sand filled) channels exhibit similar 
seismic character [40]. In the coherence attribute 
image (Figure 9), we observed a sag. The sag 
observed in the vertical seismic section (yellow 
arrows) in Figure 9 indicates differential compaction 
and corresponds to the incised channels in the 
coherence image, consistent with the observation 
of Chopra and Marfurt [41] and Torrado, et al. 
[40], who reported that differential compaction 
can also be seen in seismic amplitude section. The 
most-positive curvature in Figure 10b delineates 
the likely levees and flanks of the channels, while 
the most-negative curvature indicates the channel 
axis (thalwegs) [41]. Figure 10C shows a strong 

red circle). This feature was not observed in the FFT 
algorithm and was barely visible even in the CWT 
at lower frequencies, but become pronounced at 
higher frequencies. This suggests that the main 
channel is relatively thicker than its branch. This 
otherwise hidden geological information is import-
ant both for prospect evaluation and for quantify-
ing reservoir heterogeneity.

Mixing outputs of different frequencies enables 
us to analyse results that depict different geologi-
cal features related to different geometrical scales 
simultaneously i.e., higher frequencies reveal fea-
tures of more detailed character, whereas lower 
frequencies reveal those which are more coarse. 
Figure 8 shows a RGB colour blended full colour im-
age using 28 Hz (in red), 42 Hz (in green) and 60 Hz 
(in blue). The RGB colour blending also distinctly de-
picts the channel configuration mentioned above. 
The intensity of each primary colour represents the 
intensity of the attribute in that channel.

Figure 9 shows a coherence attribute image 
showing the channel features through a seismic 
section perpendicular to the thalweg of the chan-
nels. We have also used the coherence attribute 
to enhance channel edges (Figure 10a). Figure 10b 
and Figure 10c show the most-positive and the 

Figure 9: Display showing incised channels on a coherence slice and its seismic amplitude signature. The seismic 
signature of the incised channel is seen as a sag at the position of the yellow arrows. We interpret the sag over 
the channels to indicate that they contain more shale than the surrounding matrix.
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Figure 10: a) Coherence image; b) Most positive curvature and; c) Most negative curvature, the yellow arrows 
delineate channel edges seen in the Coherence. Note that these channels can be followed further on the most 
negative curvature image. Notice the strong most-negative curvature anomaly along the channel axis (blue). We 
interpret the most negative curvature anomaly to be due to differential compaction over shale-filled channels.

A B

Figure 11: a) Co-rendered coherence and most negative curvature; b) Co-rendered most-positive and most-neg-
ative curvature volumes where moderate curvature values are rendered transparent. Sediments within the 
channel have undergone more compaction and give rise to a strong negative curvature anomaly along its axis 
(blue). Levees and channel edges appear as ridges and give rise to strong positive curvature anomalies (red).
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shallow thin sand reservoirs in the F3 block, we have 
carried out spectral decomposition analysis using 
the Fast Fourier Transform (FFT) and Continuous 
Wavelet Transform (CWT) on a 3D seismic data 
acquired in the F3 block. We assessed the relative 
performance of the FFT and CWT on the data. 
We used a red-green-blue (RGB) colour-blending 
technique to display the composite full colour 
image to enhance better resolution of the channels 
features. In order to determine the infill lithology of 
these channels, we have also used the coherence 
and curvature attributes in a complementary 
manner. While the coherence attribute was used 
to enhance channel edges, the curvature attribute 
was used to discriminate between intrachannel 
shale versus sand lithologies based on differential 
compaction of the channel relative to its edges.

The results show two distinct almost linear 
channels trending in the NNE-SSW direction. The 
CWT algorithm remarkably delineated the channel 
geometries in a much better way than the FFT 
algorithm. While the most positive curvature 
defines the likely levees and overbank deposits 
and as well as the flanks of the channel, the most 
negative curvature defines the channel axis. The 
curvature anomalies also correlate to the channels 
geometry obtained from the coherence attribute. 
The strong negative curvature along the axis of 
the channel is due to differential compaction of a 
channel filled likely with shale.
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