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Abstract
The Middle East is suffering from water scarcity in the arid/semiarid settings. The recent advance of 
technologies in the geophysical fields made groundwater monitoring possible from space. Time-variable 
gravity data and climatic model are utilized to monitor mass variations caused by groundwater changes 
over the Sinai Peninsula during the period 04/2002-07/2016. Results are: (1) Sinai Peninsula is receiving low 
average annual precipitation (AAP) rate, varying from 22.3 mm/yr to 68.5 mm/yr; (2) The average annual 
Terrestrial Water Storage variations (ΔTWS) were estimated at -3.92 ± 0.23 mm/yr; (3) The average yearly 
non-groundwater components were estimated at -1.35 ± 0.032 mm/yr; (4) The average annual groundwater 
storage variations (ΔGWS) were estimated at -2.57 ± 0.22 mm/yr. The depletion in the mass variations over 
Sinai seems to be caused by the natural discharge, low rainfall rates, and the surface runoff from the land 
toward the water bodies. The integrated approach is informative and a replicable study for the areas of poor 
information.
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TWS observations have become directly available 
over a vast area. The launch of the GRACE as a joint 
NASA-DLR mission in 2002 to detect variations in 
the Earth that are used to monitor the TWS chang-
es. GRACE cannot distinguish between the differ-
ent partitions of TWS. Therefore, the outputs of the 

Introduction
Terrestrial water storage (TWS) plays an import-

ant role in the climate system of the Earth [1]. Given 
the importance of the TWS, there are many pauci-
ties in the data on the regional and global scale [2]. 
With the advances in satellite gravimetric methods, 
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land surface model are integrated with GRACE data 
to partition the TWS into its different components.

GRACE data have been widely used in the anal-
ysis of the characteristics of TWS seasonality [3]. 
GRACE data can be used for identifying the ex-
treme climatic impacts like floods and drought 
[4,5]. Some hydrological information can be com-
bined with GRACE data to understand variables in 
the hydrological cycle, and hydrological investiga-

tions, including e.g., (a) Water balance and storage 
variabilities [6-9] and (b) Aquifer behavior (e.g., 
[10-18]). The advantage of GRACE over other tra-
ditional measurements is its ability to measure the 
total water storage from the surface down to the 
deepest aquifer.

The Sinai Peninsula has an area of 61,000 km2 
and represents the Asiatic part of Egypt. Gulf of 
Suez and the Suez Canal are geographically sepa-

Figure 1: Showing the geology of the study area. Also shown are the locations of wells, faults, and shear zones. 
Also shown are the groundwater level (MAMSL) and groundwater flow direction.
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tions. The mascon solutions are provided by the 
University of Texas-Center for Space Research (UT-
CSR-M: http://www2.csr.utexas.edu/grace/). Mass 
concentration blocks (mascons) are another form 
of gravity field basis functions to which GRACE’s 
inter-satellite ranging observations are fit. With 
mascons, geophysical constraints can be easily im-
plemented. The CSR mascon products (Release: 06; 
v: 01; Spatial resolution: 0.25° × 0.25° grid) use a 
defined grid newer than the RL05 version [28,29]. 
The mascon products have become widely used, 
given that all the observed signals are captured 
within the GRACE noise levels with the advantag-
es of higher spatial resolution and minimum error. 
De-striping, smoothing filtering, and scaling tech-
niques are not required with these mascon solu-
tions [16,28,30-32]. The hexagonal tiles, spanning 
the coastline, are evenly divided into two tiles.

The monthly GRACE grids are used in the cur-
rent study to analyze TWS variations. These prod-
ucts are processed from the Release-05 spherical 
harmonics (https://grace.jpl.nasa.gov/data/get-da-
ta/monthly-mass-grids-land/). Some data centers 
are working on the spherical harmonics data and 
providing gravity solutions. Among these centers 
are: The (UT-CSR), NASA’s Jet Propulsion Labora-
tory (NASA-JPL), and Deutsches GeoForschungsZ-
entrum (GFZ). The TWS estimates from these solu-
tions show a good correlation with each other, and 
a small difference among them is within the error 
margin [33].

The scale factor, corresponding to the grid-
ded solutions, was applied to restore the ampli-
tude-damping from the filtering process [34]. The 
solutions were scaled and averaged for the TWS 
calculations. The secular trends and the associated 
errors in ΔTWS were calculated.

GLDAS
Monthly GLDAS data [6] were utilized to es-

timate the components of the water storage. 
Two GLDAS versions are used: VIC [35], and CLM 
[36,37]. GLDAS is a land surface model that is in-
tegrating satellite and ground-based observational 
data products, using advanced land surface mod-
eling and data assimilation techniques, to produce 
optimal simulated components for climatic investi-
gations [6].

The high-quality, global land surface fields of GL-
DAS are used for climatic studies, water resources, 
and water cycle studies. The project has provided 

rating the Sinai Peninsula from Egypt. It is bounded 
to the east, and north by the Gulf of Aqaba, and the 
Mediterranean Sea, respectively.

In this work, the GRACE data and outputs of GL-
DAS model are integrated to estimate the ground-
water storage changes (ΔGWS) in the Sinia Penin-
sula. Addressing this research for the arid environ-
ment of the Sinai area is important for studying the 
water resources development and for the develop-
ment of replicable models that can be applied to 
similar areas worldwide.

Geological and Hydrogeology of the Area
Two groups of rock units (Figure 1) appear in the 

study area: (1) Precambrian crystalline rocks. These 
rocks are mainly composed of igneous and meta-
morphic rocks with fractures and fault zones. Many 
dykes of Tertiary age are cutting the basement rocks. 
They form the bulk of the southern mountains and 
represent part of the Arabian-Nubian Shield Mas-
sif [19-21]. (2) Thick Phanerozoic rocks. The Upper 
Jurassic-Lower Cretaceous fluviatile sandstone and 
conglomerates of the Malha Formation of the Nu-
bian Sandstone Group overlay unconformably the 
basement rocks [21]. The Phanerozoic section is 
composed of Upper Cretaceous marine sandstone. 
Thick Tertiary Thebes Limestone overlies it [21]. 
Three potential aquifers are considered in Sinai. 
Quaternary aquifers are occupying ~50% of the 
area of the total aquifers in Sinai. They are located 
in the major wades and/or the deltas, composed of 
gravels and sands. The Lower Miocene sandstones 
of Gharandel Group [22] represent the Tertiary 
aquifers. The Cretaceous aquifers are formed of 
the lower and Middle Cretaceous units. The upper 
unit of Nubian Sandstone is considered to include 
the Lower Cretaceous sandstone, together with the 
overlying Cenomanian sandstone [21,23-25]. The 
Lower Cretaceous Nubian Sandstone represents 
the main water-bearing Formation in the area with 
a maximum ~500 m thick; in central Sinai, it has a 
thickness varying from 70 to 130 m [26]. The Nu-
bian aquifer in Sinai occupies a vast area extending 
from the crystalline rocks of central Sinai westward 
to the Gulf of Suez and northeastward to the Dead 
Sea [27].

Data and Analysis Methods
Gravity data

Two types of GRACE datasets were utilized in 
this research: the GRACE mascon and monthly solu-
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Figure 2: ΔTWS trend map of monthly (04/2002-07/2016) TWS solutions extracted from CSR-M (a), CSR-Mon 
(b), JPL-Mon (c), GFZ-Mon (d), and the average (e).
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rainfall for weather forecasting, drought monitor-
ing, and climate research (spatial domain: 50° N to 
50° S; spatial resolution: 0.25°; temporal resolu-
tion: 3-hours). Given the unavailability of the gauge 
stations over the Sinai, TRMM data were utilized 
in this study. The monthly and the AAP time series 
were created from the rainfall data. TRMM data 
were used to investigate the role of the rainfall on 
the groundwater behavior in the study area.

Results and Discussion
Temporal variations in ∆TWS

∆TWS is the difference between the current and 
previous months’ TWS. The spatial distribution of 
the secular trends in ∆TWS over the Sinai area is 
shown in Figure 2. Inspection of Figure 2 shows that 
the study area is witnessing significant negative 
TWS trends. The value of the average TWS trend 
decreases from a low negative value of -4.25 mm/
yr at the western parts to a high negative value of 
-8.70 mm/yr at the northeastern parts of the study 
area (Figure 2e). This indicates that the depletion 

a big archive of modeled and observed meteoro-
logical data, and output covering the Earth with 1° 
and 0.25° resolution spanning the period of 1948 to 
present. It includes four versions of the CLM, VIC, 
Mosaic and Noah [6,38-40].

GLDAS is generating optimal simulations of 
land surface states [6]. The GLDAS-derived soil 
moisture storage (ΔSMS) variations were calculat-
ed by averaging the soil moisture estimates over 
the Sinai area. The ΔSMS variations represent the 
non-groundwater component of the TWS, given 
that the absence of the snow water equivalent and 
the canopy water storage variations over that area. 
Therefore, the ΔSMS was only removed from the 
ΔTWS to estimate ΔGWS. Ahmed, et al. [41] have 
shown that GLDAS is providing better estimates of 
soil moisture in arid/semiarid settings when com-
pared to estimates from other land surface models 
over Saharan Africa.

Rainfall data
TRMM [42] monitors tropical and subtropical 

Figure 3: Correlation coefficients between ΔTWS data from CSR-M, and average monthly GRACE solutions a) 
CSR-Mon, and JPL-Mon GRACE solutions; b) CSR-Mon, and GFZ-Mon GRACE solutions; c) and JPL-Mon and GFZ-
Mon GRACE solutions over Sinai during the investigated period.
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Depletion rate
As mentioned above, the GRACE TWS has no 

vertical resolution, so the simulated TWS compo-
nents of GLDAS models were integrated to subtract 
the non-groundwater partitions from TWS. Equa-
tion (1) is used to partition the TWS into its compo-
nents over the investigated area.

∆TWS = ∆GWS + ∆SMS 			          (1)

The average ∆SMS value of the two GLDAS ver-
sions (VIC and CLM) was estimated. The temporal 
change in GLDAS-derived SMS and the secular trend 
over the study area is shown in Figure 5. The aver-
age GLDAS-derived ∆SMS time series is witnessing 
a negative trend, estimated at -1.35 ± 0.032 mm/
yr. By applying Equation 1, ΔGWS was estimated 
over the investigated area.

Figure 6 shows the ΔGWS time series generat-
ed based on Equation (1) over the study area. Wit-
nessing of Figure 6 shows that the Sinai area is ex-
periencing a general ΔGWS decline of -2.57 ± 0.22 
mm/yr (-0.16 ± 0.013 km3/yr). Although the general 
trend in the groundwater storage variations is wit-
nessing a depletion, minor modern recharge rate is 
believed to occur through the sandstone outcrops 
at the northern flanks of the crystalline rocks in 
central Sinai [43]. Previous studies have shown that 
the Nubian aquifer was recharged when more hu-
mid climatic conditions were prevailed in the Qua-
ternary time by the intensification of paleomon-
soons [44,45] or intensification of paleowesterlies 
[46,47].

Analysis of precipitation data
The analysis of TRMM data over the Sinai area 

shows that the monthly rainfall values are character-
ized by higher rates during October-March months, 
and with lower rates in May-August months (Figure 
7). These rates indicate that the Sinai area is receiv-
ing lower rainfall rates in that semiarid environ-
ment. Inspection of Figure 8 shows that the rain-
fall is very low over most parts of Sinai, whereas 
it shows little substantial rates close to the Gulf of 
Aqaba, Suez Canal, and the northeastern parts. The 
AAP time series (Figure 9) shows a decrease from 
68.5 mm in 2002 to 22.3 mm in 2009, and then an 
increase to 50.3 mm in 2016, with an average of 
44.91 mm/yr (2.73 km3/yr) during the studied peri-
od. The rainfall contribution to the groundwater re-
charge seems to be very low, given the low precipi-
tation rates, and the surface runoff toward the Gulf 

Table 1: GRACE solutions over the Sinai area.

Variable
Trend
(mm/yr)

Volume
(km3/yr)

GR
AC

E 
to

ta
l

(Δ
TW

S)

CSR-M

P value

-3.68 ± 0.35

< 0.0001
-0.224 ± 0.0214

CSR-MON

P value

-4.06 ± 0.24

< 0.0001
-0.247 ± 0.015

JPL-MON

P value

-4.64 ± 0.27

< 0.0001
-0.28 ± 0.017

GFZ-MON

P value

-3.30 ± 0.27

< 0.0001
-0.20 ± 0.017

AVG

P value

-3.92 ± 0.23

< 0.0001
-0.238 ± 0.014

ΔSMS

P value

-1.35 ± 0.03

< 0.0001
-0.082 ± 0.002

(Δ
GW

S)

CSR-M

P value

-2.33 ± 0.34

< 0.0001
-0.142 ± 0.02

CSR-Mon

P value

-2.71 ± 0.24

< 0.0001
-0.165 ± 0.015

JPL- Mon

P value

-3.29 ± 0.27

< 0.0001
-0.199 ± 0.016

GFZ- Mon

P value

-1.95 ± 0.27

< 0.0001
-0.119 ± 0.016

AVG

P value

-2.57 ± 0.22

< 0.0001
-0.16 ± 0.013

AAP 44.91 2.73

rate is increasing from the west toward the east 
and northeast. Good correlation coefficients of 
0.67-0.78 are obtained among the different GRACE 
solutions over the study area (Figure 3). The scaled 
GRACE-derived TWS time series (Figure 4) are ex-
periencing negative TWS trends. The study area has 
an average TWS trend value of -3.92 ± 0.23 mm/yr 
(Table 1).
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discharge areas of the aquifers [43,48]. The Gulf of 
Suez, the Dead Sea, and the Gulf of Aqaba represent 
the most important natural outlets of the aquifers. 
The south to north groundwater flow seems to be 
partially impeded by the E-W trending Themed and 
Minsharah shear zones (Figure 1). To the north, the 
groundwater flows subparallel to the NE-trending 
folds and faults of the Syrian Arc System. The flow 
system is provided from the groundwater elevation 
data (Sinai, Wadi Sheira: +467 mamsl; El Themed: 

of Aqaba, Gulf of Suez, and the Mediterranean Sea 
as it is shown from the drainage basins and stream 
networks over the area (Figure 10). Therefore, the 
rainfall might have low effects on the recharging of 
the groundwater aquifers in the study area.

Structural effects on groundwater behavior
The groundwater elevation data is showing in 

Figure 1. It shows that the groundwater in the aqui-
fers in Sinai and the Negev area flows towards the 

Figure 4: GRACE-derived ΔTWS and their averaging over Sinai area.

Figure 5: GLDAS-derived ΔSMS over Sinai area.
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This helps the groundwater flow subparallel to the 
shear zones toward the natural outlets in the east 
and the west, and partially northward across these 
shear zones.

Conclusion
Based on the GRACE and GLDAS datasets, the 

groundwater resources of the Sinai area are stud-
ied during the period of 04/2002-07/2016. The Si-
nai area is located in an arid/semi-arid zone. It is re-
ceiving average annual precipitation of 44.91 mm/
yr (2.73 km3/yr) during the investigated period. 

+248 mamsl; Shizafon in the eastern Negev: +185 
mamsl; and Well Qetura 5 in the Arava Valley: +50 
mamsl (Rosenthal, et al. [49]; Figure 1). On the gen-
eral scale, the inspection of the ΔTWS shows that 
the direction of the groundwater flow is from the 
west and southwest toward the east and northeast. 
This is provided from the distribution of the ΔTWS 
over Sinai. Given that, the shear zones in central 
and north Sinai represent areas of concentrated 
brittle deformation. One would expect enhanced 
porosity, and permeability proximal to the faults 
of the shear zones compared to the surroundings. 

Figure 6: GRACE-derived ΔGWS and their averaging over Sinai area.

Figure 7: Precipitation over Sinai during the investigated period.
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Figure 8: TRMM-derived AAP for the period (04/2002-07/2016) over Sinai area.

Figure 9: The AAP over Sinai area.
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Figure 10: The basins of the Sinai and the stream networks extracted from Shuttle Radar Topography Mission 
90 m.
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