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Introduction
Materials with nonlinear properties have appli-

cations in optical switching [1], lasers, photovoltaic 
cells [2], imaging [2], cancer therapy [3,4], advanced 
computing [5,6], and communication technologies 
[7,8]. To improve applications, it is important to es-
tablish good methods and models to explore the 
optimization of nonlinear effects by increasing the 
nonlinear response. This work provides a way of 
calculating the nonlinear response of nanostruc-
tures. This helps in designing new systems without 
the need for doing difficult and time-consuming 
measurements.

The Finite-Difference Time-Domain (FDTD) 
method offers a method of directly implementing 
the Schrödinger equation in a three-dimensional 

Abstract
A method is described to simulate the magnetic susceptibility of a quantum toroid with grating. 
This simulation is based on the direct implementation of the time-dependent Schrödinger 
equation in three dimensions. The expectation value of the quantum magnetic dipole operator 
is calculated as a function of the applied magnetic field strength of a time-oscillating magnetic 
field. These expectation values are used to calculate the linear and nonlinear magnetic 
susceptibility of a torus. 
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structure and has recently been applied to quan-
tum simulation [9-13]. The accuracy of this method 
in determining the eigenstates of quantum wires 
was previously described [14]. The FDTD method 
was used in the determination of the hyperpolar-
izability of quantum wires in close proximity to an 
electric dipole [15]. A method was also presented 
to simulate the magnetic response of a quantum 
toroid using the quantum magnetic dipole opera-
tor [16]. This work develops the FDTD method to 
calculate the magnetic dipole moment in a grated 
torus structure with a time-varying magnetic field. 
The magnetic susceptibilities are then calculated. 
This will allow for the optimization of structures to 
enhance the nonlinear properties in the presence 
of a time-varying magnetic field.

This paper will briefly describe the FDTD im-
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plementation of the time-dependent Schrödinger 
equation and applies it to determine the eigenen-
ergies and eigenstates of a quantum torus [17-19]. 
The FDTD implementation of the magnetic dipole 
moment operator will also be described [16]. Then 
a simulation will be presented for a time-harmon-
ic electric field. Finally, the time-harmonic electric 
field will be used to calculate the magnetic sus-
ceptibility of a grated torus structure. The method 
presented may be used to calculate the magnetic 
susceptibility of other structures.

The Finite-Difference Time-Domain Meth-
od and the Determination of Eigenenergies 
and Eigenstates

The time-dependent Schrödinger equation [19] 
is given by:

( ) ( ) ( ) ( )

( ) ( )

2 2 2

2 2 2
e

, , , , , , , , , , , ,
  

2

, , , , ,

x y z t x y z t x y z t x y z t
i

t m x y z

i V x y z x y z t

 ∂Ψ ∂ Ψ ∂ Ψ ∂ Ψ
= + + ∂ ∂ ∂ ∂ 

− Ψ





,   (1)

Where em  is the mass of an electron and V  is 
the potential seen by the electron.

From [19], Ψ  contains both a real and an 
imaginary component. This allows Ψ  to be 
separated and Eq. (1) to be written as a pair of 
coupled equations which may be run sequentially:
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The coordinates m, n, and l represent the 
physical positions in a matrix, which have replaced 
x, y, and z. Each cell has a linear dimension of 

x∆  on each side. Each time step iteration is 
represented by k, where the time t, from the 
beginning of the simulation, is given by   t t k= ∆ ×
. These equations are evaluated for each cell in the 
three-dimensional array at each time step, and the 
alternating of the real and imaginary components 
allow the simulation of the behavior of Ψ  over 
time. Further details can be found in [9-11,16,20]. 
The Ψ  calculations over time can be used to find 
the eigenstates and eigenenergies [16-19].

This work will evaluate a torus with a diameter 
of 70 angstroms and a tube diameter rof 12 
angstroms. The structure is created by setting a 

 

 

 

(a) (b) 

y-
di

re
ct

io
n:

 1
00

x-direction: 100

z-
di

re
ct

io
n:

 3
0

x-direction: 100

4

4

4
4 2 . rtorus = 70 2 . rtube = 12

2 . rtube = 12

PML = 5

PML = 5

Figure 1: The problem space for the torus in the a) x-y direction; and (b) x-z direction. The total problem space 
is 100 × 100 × 30 cells, with each cell representing one angstrom cubed. The torus radius is 35 angstroms, and 
the tube radius is 6 angstroms. The PML boundary is five cells in each direction.
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test function was a good estimation of the ground 
state, since no other peaks are visible to indicate 
other eigenenergies. Additional information can be 
found in [16].

Once the ground state eigenenergy is calculated, 
the ground eigenstate can be found by isolating it 
from the test function using the discrete Fourier 
transform at the frequency associated with the 
ground state eigenenergy, 0 = ω  . The details of 
this process were previously described [16]. The 
resulting ground eigenstate is shown in Figure 4 
through the center of the torus through the z-axis. 

This result can be verified by calculating the 
frequency at which the ground eigenstate must 
oscillate. The period is defined by

15

0

4.136 10 eV sT      4.6fs
0.899eV

−× ⋅
= = =



.	        (3)

To measure this period, the ground eigenstate 
is initialized to realΨ  and imagΨ . Then the FDTD 
program is run a designated number of iterations 
to ensure that the result is the expected behavior, 

potential of 0 eV for the cells composing the torus, 
and 4.6 eV for the surrounding cells. A perfectly 
matched layer (PML) [21,22] of five cells surrounds 
the torus to absorb outgoing waves as described in 
[13]. Figure 1 shows the simulation space for the 
torus.

In order to find the ground state eigenenergy, an 
initial test function is chosen for ( )0, , ,x y z tΨ . Details 
regarding the choice in test function were previously 
discussed [16]. The test function approximates the 
ground eigenstate by being evenly distributed around 
the torus with a Gaussian pulse according to 

( ) ( ) ( )( )2
tube0.5 dist , , / 0.5

0, , ,   e x y z rx y z t − ⋅ ⋅Ψ = ,

Where ( )dist , ,x y z  is the distance from a given 
location to the center of the torus tube. The test 
function is shown in Figure 2.

The wavefunction is then monitored at the 
location 0 0 0, ,x y z  over time, and a Fourier transform 
will allow the eigenenergy to be calculated, as 
shown in Figure 3. A single peak shows the ground 
state eigenenergy is 0.901 eV. This also shows the 
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Figure 2: Test function initialized within a wire as the initial state ( )0, , ,x y z tΨ . This is a narrow Gaussian pulse 
centered within the torus.
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as shown in Figure 5. A full period was shown to 
be 422-time steps, with the ground eigenstate 
inverted after 211-time steps.

Calculation of the Magnetic Dipole Moment
The Hamiltonian when a magnetic field is applied 

is given by 

( )
2

e

1   , ,
2

H q V x y z
m i

 = ∇ − ⋅ + 
 

A 	         (4)

Where A is the vector potential [19]. A static 
magnetic field B0 is applied in the z-direction, 
perpendicular to the torus. Then A can be simplified 
to
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Figure 3: The eigenenergy distribution after 10,000 iterations beginning with a test function (shown in Figure 
2) as the initial value for ( )0, , ,x y z tΨ . The resulting ground state eigenenergy is 0.901 eV.
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Figure 4: The ground eigenstate of the torus taken through the center of the torus. This was found using the 
discrete Fourier transform at the frequency associated with the ground state eigenenergy found in Figure 3.
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operator is

( ) ( ) ( )
2
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= − ×∇ − ⋅ +m r .     (7)

This is then implemented in FDTD, with the x and 
y positions being taken from the center of the torus. 
A detailed explanation of the FDTD implementation 
was previously given [16].

The accuracy of the expectation value of the 
magnetic dipole moment can be verified by 
comparing it with the classical magnetic dipole 
moment given by

2 ˆ  torusm I r zπ= ⋅ ⋅ ,				           (8)
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This results in the Hamiltonian:
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This ignores the electric dipole interaction. 
Details of this implementation have been described 
previously [9,10,16].

From [23], the magnetic dipole moment 
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Figure 5: The ground eigenstate after a) 0 iterations (initial state); b) 106 iterations (quarter cycle); c) 211 
iterations (half cycle); d) 317 iterations (three-quarters of a cycle), and e) 422 iterations (full cycle). The period 
of the ground state oscillating is 4.6 fs, which is the value predicted using the ground eigenenergy found in 
Figure 3.
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Table 1 shows the results of the classical and 
FDTD quantum approach for several magnetic field 
strengths. The classical and quantum approaches 
give values that are the same within about three 
percent, verifying the magnetic dipole moment 
operator and the magnetic field implementation 
using the FDTD method. Similar results were 
previously described, including a comparison at 
various eigenstates [16].

Where I is the current and torusr  is the radius of 
the torus [24]. A wave-packet within a radial Gauss-
ian envelope is initialized in the torus and assigned 
the charge of one electron. The wave-packet will 
travel around the torus as the FDTD simulation 
runs. The expectation value of the position is used 
to determine the current in the torus. Further de-
tails regarding this method were previously de-
scribed [16].

  
(a) (b) 

  
(c) (d) 

B[
T]

30

20

10

0

-10

-20

-30

Time[fs] Time[fs]
0        200      400       600      800     1000    1200

0      10     20      30     40     50      60     70     80

0        200      400       600      800     1000    1200

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

2

1

0

-1

-2

-3

-4

-5

1

0

-1

-2

-3

-4

-5

-6

<m
>[

m
A 

. Å
2 ]

Frequency [THz] Frequency [THz]

30

0.26

0      10     20      30     40     50      60     70     80

2 
. F

{B
}

2 
. F

{<
m

>}

Figure 6: The results of a simulation of a particle in a torus under the influence of a sinusoidal magnetic field 
with a maximum magnitude of 30 T and a frequency of 20 THz. a) The applied magnetic field over time; b) The 
calculated magnetic dipole moment over time; c) The Fourier transform of the magnetic field showing the 
applied magnetic field strength of 30 T at 20 THz, and d) The Fourier transform of the dipole moment showing 
the primary response is at the applied frequency of 20 THz.

Table 1: Classical and quantum magnetic dipole moment with a static magnetic field.
Magnetic Field [T]

Classical ( )2
 mA Å ⋅
 

m Operator ( )2
 mA Å ⋅
 

m
Difference

-50 7.8 7.6 2.6%
-25 7.5 7.4 1.3%
0 7.3 7.2 1.4%
25 7.1 7.0 1.4%
50 6.9 6.8 1.5%
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the expected linear relationship with the applied 
magnetic field strength, as shown in Figure 7. 

Magnetic Susceptibility
The magnetic dipole moment generated from 

the FDTD method using the Fourier transform, 
as in Figure 6d, can be used to find the magnetic 
susceptibility. 

From [1], the bulk polarizability is given by

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 3  .....P t E t E t E tχ χ χ= + + + ,     (10)

Where ( )1χ  is the linear electric susceptibility, 
( )2χ  is the second-order nonlinear optical 

susceptibility, and ( )3χ  is the third-order nonlinear 
optical susceptibility. This response is in the 
z-direction only, which is the direction of the 
applied magnetic field. The bulk polarizability is 
related to the dipole moment of a molecule by

( ) ( )  P t Np t= ,				          (11)

Where N is the number density and many 
conditions are met [1]. The dipole moment equation 
may then be written as

( ) ( ) ( ) ( )2 3  ......p t E t E t E tα β γ= + + + .	     (12)

An analogous equation for the magnetic dipole 
moment m using the magnetic field ( )B t  results in

( ) ( ) ( ) ( )2 3  ...m t B t B t B tα β γ′ ′ ′= + + + ,	      (13)

Where the primed quantities are the linear and 

Simulation of a Time-Harmonic Magnetic 
Field

With the magnetic dipole moment operator 
verified, the effects of a time-harmonic magnetic 
field on the ground eigenstate can be examined. 
The ground eigenstate is loaded for the initial 

realΨ  and imagΨ . The applied magnetic field is a 
sinusoidal function,

( ) ( )max 0 ˆ  sin 2B t B f t zπ= ⋅ .		          (9)

This will be multiplied by a Hanning window 
to reduce the effects of the abrupt addition of a 
magnetic field. The effects of the magnetic field 
may be monitored by observing the magnetic dipole 
moment using the operator previously described.

Figure 6a shows the applied 30 T, 20 THz mag-
netic field over time. Figure 6b shows the calculat-
ed magnetic dipole moment over time. Figure 6c 
and Figure 6d show the Fourier transforms of the 
magnetic field and the magnetic dipole moment, 
respectively. The peak for the magnetic field is 30 
Tat 20 THz in Figure 6c, as expected given the in-
put magnetic field. The magnetic dipole moment 
shown in Figure 6d also shows a peak at 20 THz and 
no significant response at other frequencies.

The peak values of the magnetic dipole 
moment generated with the Fourier transform 
are determined at 0f . These are shown to have 

Figure 7: The magnetic dipole moment versus the magnetic field strength for a magnetic field of 20 THz. This 
shows the expected linear response.
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nonlinear response, irregularities were added 
to the structure. A grated torus, one in which a 
periodic potential is added, is used in this work. Any 
structure may be examined using the FDTD method 
simply by specifying the potential ( ), ,V x y z .

The grated torus is shown in Figure 8. The torus 
shown has 20 peaks, and the difference between the 
peaks and the troughs is 0.6 eV. The corresponding 
ground eigenstate is shown in Figure 9 and also 
displays 20 peaks.

The results of a magnetic field described by Eq. 
(9) where max  30 T  B =  and 0  20 THz f =  on the 
grated torus are shown in Figure 10. The majority 
of the signal for the magnetic dipole moment is at 

0f , but there is also a significant component at 03 f
, as shown in Figure 10d. This corresponds with 
the second hyperpolarizability. This component is 
much more prominent than that seen in the plain 
torus in Figure 6d.

Figure 11 shows the component of the magnetic 
dipole moment determined at 20 THz 0f , across sev-
eral magnetic field strengths. Because the hyperpo-
larizability has a cubic component at 0f , as shown in 
Eq. (16), a best fit line is created using a linear and 
a cubic response to match the calculated values. The 
linear coefficient, α, is dominant and gives the polar-
izability.The cubic coefficient, γ , is a component of 
the second hyperpolarizability. These coefficients are 
used to create the solid fit line on the graph.

nonlinear electric polarizabilities and hyperpolar-
izabilities. The following calculations will focus on 
α (the magnetic polarizability), β (the magnetic hy-
perpolarizability), and γ (the magnetic second hy-
perpolarizability) [2]. The response is needed in the 
frequency domain, so the magnetic dipole moment 
is written as

( ) ( ) ( ) ( )2 3  m B B Bω α ω β ω γ ω′ ′ ′= + + .	     (14)

A Fourier transform is performed to obtain the 
magnetic dipole moment in the frequency domain.

The polarizability will occur at the fundamental 
frequency 0ω . The time varying magnetic field 
was previously described in Eq. (9). This means 
the hyperpolarizability will have a magnetic field 
component

( ) ( )( )2 2 2
max max 0

1  cos 2
2

B t B B tω= − ,	     (15)

Which has a frequency component at 0 and at 
02ω  [25].

Similarly, the second hyperpolarizability will 
have a magnetic component 

( ) ( ) ( )( )3 3 3
max 0 max 0

1  3 sin sin 3
4

B t B t B tω ω= −         (16)

This means the second hyperpolarizability will 
have frequency components at 0ω  and 03ω .

The Fourier transform of the simulation results 
for the plain torus in Figure 6d showed only a small 
component at 03 f . In an attempt to find a higher 

Figure 8: The potential showing a grated torus with the cross section at z = ZC. This structure is used to find a 
nonlinear response.



• Page 9 of 12 •Houle et al. Int J Magnetics Electromagnetism 2018, 4:015

Citation: Houle J, Sullivan D, Crowell E, Mossman S, Kuzyk MG (2018) Three-Dimensional Time Domain Simulation of the Quantum 
Magnetic Susceptibility. Int J Magnetics Electromagnetism 4:015

ISSN: 2631-5068 |

Figure 9: The ground eigenstate for the grated potential with the cross section shown at z = ZC. This ground 
eigenstate will be used for the initial value ( )0, , ,x y z tΨ  when applying the time harmonic magnetic field.

  
(a) (b) 

  
(c) (d) 

Figure 10: The results of a simulation of a particle in a grated torus under the influence of a sinusoidal magnetic 
field with a maximum magnitude of 30 T and a frequency of 20 THz. a) The applied magnetic field over time; b) 
The calculated magnetic dipole moment over time; c) The Fourier transform of the magnetic field showing the 
applied magnetic field strength of 30 T at 20 THz; and d) The Fourier transform of the dipole moment showing 
the primary response is at the applied frequency of 20 THz and a secondary response at 60 THz.
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Figure 11: The absolute value of the magnetic dipole moment determined at 0f  versus magnetic field strength 
for a particle in a grated torus. A best fit line is used to find the linear coefficient (α = 3 2 17.74 10  mA T− −× ⋅ ⋅Å ) and 
the cubic coefficient (γ = 10 2 36.33 10 mA T− −− × ⋅ ⋅Å ).

Figure 12: The absolute value of the magnetic dipole moment determined at 03 f  versus magnetic field strength. 
A best fit line is used to find the cubic coefficient (γ = 10 2 32.20 10  mA T− −× ⋅ ⋅Å ).
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Similarly, the magnetic dipole moment from 
the Fourier transform can be determined at 02 f , 
which is the frequency of the second harmonic, to 
examine the hyperpolarizability. In the case of both 
the plain and grated torus, this component is not 
present in any significant amount.

Figure 12 shows the component of the magnetic 
dipole moment at 03 f . The coefficient of the 
cubic response is a component of γ , the second 
hyperpolarizability. The cubic fit line is also shown 
in Figure 11. The ratio of γ  determined at 03 f  to 
γ  determined at 0f  is approximately -0.35, which 
is close to the ideal value of -1/3. This ratio can be 
seen in Eq. (16).

Conclusion
A method was introduced that uses the quan-

tum FDTD calculation to determine the magnetic 
susceptibility of a torus and of a grated torus. The 
expectation value of the magnetic dipole moment 
was found as a function of the applied time-varying 
magnetic field amplitude to determine the magnet-
ic susceptibility. The response of a torus was found 
to be linear, with no significant frequency compo-
nents aside from that of the applied frequency. For 
the grated torus, the magnetic dipole moment at 
the third harmonic displays a cubic response to 
magnetic field strength, as expected. The ratio of 
γ  determined at 03 f  to γ  determined at 0f  was 
close to the predicted ratio of -1/3.

These simulations were done on a laptop com-
puter with a 2.2 GHz processor and 8 GB of RAM. 
A time-varying simulation at a single frequency, as 
shown in Figure 6, took approximately 10 minutes.

The FDTD method can simulate any structure, 
subject only to the resolution of the cell size and 
the dimensions of the problem space. This allows 
different nanostructures to be simulated, tested, 
and modified to search for the optimal nonlinear 
optical response. Future work will focus on creating 
these optimized structures.
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