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Abstract
There are two principal methods are utilized to estimate the core power loss (CPL) in magnetic 
components: Empirical equations and hysteresis models. Both approaches need an anterior 
test or analysis to calculate the CPL. Most of them are based on improved Steinmetz equations. 
Tests are usually costly or the number of necessary tests is excessive for the component design 
development. 2D analyses using Finite Element are not good enough for several magnetic 
components for their lack of symmetries.

Non-symmetric magnetic cores are ones of the most common components in transformers 
and power converters and they don’t have symmetries on the magnetic field distribution and 
only 3D models are competent to take account all the effects and phenomena.
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Introduction
Losses in magnetic cores have been analyzed be-

cause of their particular importance to the component 
design in power electronics. Physicists study the fea-
tures in magnetic materials, while design engineers in 
power electronics need to model the CPL. Nevertheless, 
there is a break between the power loss calculation the-
ories, focused in material characteristics, and engineer-
ing applications. In consequence the devices designed 
cannot fully use the material capabilities.

One group of models are based on the Steinmetz 
equation where the coefficients are determined by fit-
ting the loss model to the measurement experimental 

data. This model postulates purely sinusoidal flux den-
sities. An increase of [1] was presented by Jordan in [2] 
where an iron loss model where the static hysteresis 
loss (HL) and dynamic eddy current loss (ECL) were 
divided. Pry and Bean added the excess loss factor 
or anomalous factor [3]. Bertotti developed a theory 
developing the losses by introducing the concept of 
magnetic objects, which led to excess loss in terms 
of the active magnetic objects and the domain wall 
motion [4,5]. Once the separation of the iron losses 
after the magnetizing processes was added, the loss-
es caused by linear magnetization, rotational magne-
tization and higher harmonics were involved [6,7].

In the last times, the Steinmetz equation was im-
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proving. The Modified Steinmetz equation was present-
ed in [8] for arbitrary waveforms and the Generalized 
Steinmetz equation [9] that presented the idea of the 
instantaneous iron loss is a single valued function of 
the flux density and the rate of change of the flux den-
sity. The improved Generalized Steinmetz equation [10] 
was developed to avoid the limitation in the third high-
er harmonic. For rectangular shapes voltages, the im-
proved-improved generalized equation was published 
in [11].

To obtain a higher accuracy, hysteresis models (Pre-
isach and Jiles-Atherton) were developed [12,13]. An 
improvement of the Preisach model was presented in 
[14] including a dynamic part divided in two sections 
describing the low and high values of the flux density. 
A friction hysteresis model based on energy approach 
where the magnetic dissipation from the macroscopic 
point of view is represented by a friction-like force was 
introduced in [15]. Advances for nonlinear behaviour 
were presented in [16]. A new model which describes 
the switching behaviour implemented in Matlab is in 
[17]. Analysis for non-sinusoidal signals for specific com-
ponents used currently in power electronics has been 
studied in the last years [18-25].

The empirical and separation loss models are pref-
erable and best suited for fast and rough iron loss defi-
nition. The complex hysteresis loss models are more 
adequate for an exact iron loss. They need much more 
knowledge about the material data or prior material 
measurements as well as more information about the 
flux density waveforms. Another huge issue is the inte-
gration into Finite Element tools.

Physics Analysis
The core power losses are based on Joule heat-

ing [26] and due to spin relaxation, although this last 
impact is only at frequencies in the medium-high 
frequencies. Hysteresis and eddy current losses are 
caused by the same physical phenomena: Every 
change in magnetization (which also occurs at DC 
magnetization) is a movement of domain walls and 
produces eddy currents creating Joule heating. The 
fact that hysteresis losses also arise at almost zero 
frequency is due to the macroscopic magnetization 
change, even it is slowly, the local magnetization 
the domains modifies quickly, which generates eddy 
current losses. In consequence, the engineering ap-
proach of loss separation into different loss types 
(the so-called hysteresis losses, eddy current losses 
and excess losses) is an empirical approach, trying to 
separate the different physical influences due to fre-
quency and flux density variations in electromagnetic 
systems, rather than explaining the physical phenom-
ena directly [27]. 

Engineering Analysis
The referenced break is produced because engi-

neers usually design devices based on models with 
different coefficients than physicists use on their 
models.

However, these models are normally appropriate 
only for a defined frequency range, and practical disad-
vantages of most of these methods require additional 
measurements with a given material. Another addition-
al issue is that these methods are only for static situa-
tions [1]. Other limitations are:

1) The models are based on eddy loss induced by do-
main wall motion; it doesn’t match with empirical data 
for ferrites (Steinmetz equation coefficients).

2) It needs material and magnetic field data. Thus, it 
requires a simulation or essay to estimate the magnetic 
field into the core.

Core Power Loss Analysis using FEM
Most of the FEM [28,29] uses the Steinmetz equa-

tion with the defined parameters from the software or 
coefficient adjustments from the manufactures sheets 
on the program settings.

Also, there is another method to calculate the core 
power loss using FEM defined in [28] for the hysteresis 
and eddy current losses.

Hysteresis loss is flowing in the forward and reverse 
directions magnetizes and demagnetizes the core alter-
natively during each AC cycle. This energy loss is depen-
dent of the properties of particular core material and 
proportional to the hysteresis loop area.

           
( )1 = 

2hysteresis vol
P Im B H dVω⋅ ⋅ ⋅∫



 

            (1)

Where B


 is the magnetic flux density, H




 is the 
complex conjugate of the magnetic field and ꙍ is the 
angular frequency.

Eddy current loss is an electric current step up by 
an alternating magnetic field. These losses arise from 
the fact that the core itself is composed of conducting 
material, so that the voltage induced in it by the vary-
ing flux produces circulating currents in the material. 
Eddy current loss depends upon the rate of change of 
flux as well as the resistance of the path, it is reason-
able to expect this loss varies as the square of both 
the maximum flux density and frequency if the core 
is solid and made up from ferromagnetic materials, 
and it effectively acts as a single short circuited turn. 
Induced eddy currents therefore circulate within the 
core in a plane normal to the flux, and cause resistive 
heating of the core material.
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in the same split of the component, this effect appears 
in the edge and in the space of the two closed turns of 
the winding modifying the magnetic field density into 
the core.

For power engineers, the equivalent parameters (L 
and R for the core) can be interesting for the optimiza-
tion of the component.

The estimation L is by 3D simulation and the L-I curve 
described in [33] can be define using one of the outputs 
(ϕ-I curve) by differentiations as:

                                 
( )  = dL I

dl
φ

                                
(4)

Where ϕ is the magnetic flux.

To obtain R, it is derived at the post-modeling step 
R-Irms curve by numerical integration described in [33] 
as:

                                      
2 = 
rms

pR
l                                  

(5)

Where p  the average value of the power and lrms is 
the rms value of the current on the windings.

Conclusion
As it is mentioned previously, the complex hysteresis 

loss models are more adequate for an exact iron loss, 
however there is a huge issue is the integration into Fi-
nite Element tools.

The hardware computer limitation is not useful in 
CPU time spending for the power electronics engineers 
and the 3D FEM in higher frequencies (> 10 MHz), the 
time consuming is especially long and the error increas-
es substantially.

There are different ways to get along with these lim-
itations. Some simplifications in the 3D model could be 
a solution, but these kind of limitations may become in 
the next bottleneck for future works.

Another choice is moving the research to decrease 
the Finite Element numbers reducing the space moving 
closer the boundaries using the perfectly matching lay-
ers technique.
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