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Abstract
We treat in this effort the problem of time evolution during a time dependent radio-frequency 
pulse in the First Rotating Frame (FRF) with Fractal Time Derivatives for the Representation 
of the Schroedinger Equation and Fractal Density Matrix for Like Spins ½. The resultant time 
evolutions during a Sin-Cos Pulse are compared with the Time Dependence during the Fractal 
Bloch equations without relaxation solved using Standard Runge Kutta methods. The results 
are found to be identical. The dependence of the Magnetization on the Fractal Coefficient is 
Explored and Documented.

Fractal Density Matrices for spin ½, and then, in the 
Schroedinger Picture, apply it to obtain magnetiza-
tion profiles valid in the First Rotating frame (FRF) 
for various values of the fractal coefficient which 
we compare with the Profiles obtained through 
numerical solution of the Bloch equations without 
relaxation defined in the FRF [9-13]. We find for the 
values tested complete agreement between the 
two.

The results are taken and interpreted to mean 
that the definition of the Fractal Density Matrices 
are valid and may prove useful in the characteriza-
tion of Biological Tissues using NMR and MRI meth-
ods [4,7,14,15].

Fractal treatments of physical systems became 
very popular in the 70’s and 80’s due to the pio-
neering efforts of Mandelbrot [16-18]. Fractional 
Calculus is a branch of Mathematics that dates back 
to the era of Leibnitz the Diplomat, Mathematician 

Introduction
The ability to model spin systems time evolution 

occurring during radiofrequency (RF) irradiation 
has increased importance to the expanding use of 
shaped RF pulses [1,2]. There is currently a need to 
model the time-evolution of spins which make use 
of both amplitude and frequency modulation [2,3]. 
There is also a pressing need to be able to char-
acterize the Magnetization resulting from nuclei in 
heterogeneous environments such as Brain Tissue 
[4,5]. There has appeared in recent years a respect-
able literature concerning the so-called Fractional 
Bloch Equations [6-8]. There have been a handful of 
reports of investigation of Fractal Bloch equations 
[6-8]. In this effort we extend the theoretical treat-
ment using Fractal Time Derivatives to the case of a 
Fractal Density Matrix for spin ½ nuclei.

In this paper we first outline the theoretical de-
velopment of the formalism behind the proposed 
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and Philosopher [17]. Leibnitz was the co-inventor 
of the Calculus although he championed a devel-
opment of the Calculus based on limit arguments 
while Newton used an infinitesimal point of view. 
As the name implies the Fractional Calculus is a gen-
eralization of the integer based development that 
is standard in most textbook treatments, in which 
the order of the derivative or the integral can be a 
real number usually specified over a given interval 
on the real line [17].

There is already a substantial literature on the 
use of the fractional calculus in deriving so called 
Fractional Bloch [6,7]. The Magin group and W. 
Chen [19] has been particularly active in this regard.

Theory
We start the development by writing down Ra-

dio-Frequency Hamiltonian that can be used to 
characterize the time evolution of a spin ½ system 
of nuclei which is valid in the so-called First Rotat-
ing Frame (FRF) [20,21]. In this Hamiltonian we ne-
glect any dissipative terms such as Dipolar or Quad-
rupolar interactions [12,22-25].

( ) ( ) ( )1  RF x zH t I t I tω ω= + ∆           (1)

Here the spin angular momenta are defined 
from the Pauli Matrices adopting the following 
standard representation as [20,22]:

0 1 0 1 1 0
1 0 1

,
0 0 1

 ,x y ziσ σ σ
     

= = =     
    

−

−
          (2)

So we define the spin angular momentum, set-
ting the reduced Planck constant to 1 as:

1 1 1, ,
2 2 2x x y y z zI I Iσ σ σ= = =           (3)

The radio frequency terms ω1(t), Δω(t) are re-
spectively the amplitude of the RF along the x axis 
in the FRF while the latter is the frequency offset in 
the FRF along z [21].

If one uses the matrix representation stated in 
Eqs 2 and 3, one can write down for the RF Hamil-
tonian the following:

( ) ( ) ( )
( ) ( )

1

1

1
2RF

t t
H t

t t
ω ω

ω ω
∆ 

=  −∆ 
          (4)

One then is naturally led to writing down a sim-
ple Schroedinger equation for the wavefunction of 
the spin ½ particle using this Hamiltonian as:

( ) ( ) ( ) –  RF

d t
iH t t

dt
Ψ

= Ψ            (5)

Here the simple wavefunction has two compo-
nents labeled as 1 and 2, so in component form 
writing out the resultant system of first order dif-
ferential equations with time dependent coeffi-
cients as:

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1

1

1,
 – 1,  2,

2
2,

 –  1,  –  2,
2

d t i t t t t
dt

d t i t t t t
dt

ω ω

ω ω

Ψ
= ∆ Ψ + Ψ

Ψ
= Ψ ∆ Ψ

     (6)

We next apply the definition of the so-called 
Fractal Time Derivative of a well behaved arbitrary 
function u as defined in:

[ ] [ ]1
1

1

 –
 –  

–
u t u tu Lim t t

t t tα α α

δ
δ


= >


          (7)

It can be shown that this is equivalent to the 
transformation:

( )–1

1 1 
 

u u
t t tα α

δ δ
δ α δ

=             (8)

So applying the Fractal Derivative Transform in 
Eq(8) to the system of equations for the wavefunc-
tion Eqs(7), we immediately obtain a proposed sys-
tem of equations whose solution yields wavefunc-
tions with a dependence on the Fractal Coefficient. 
The result is:

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( –1

1

–1

)

( )

1

1, ,
 – 1, ,  2, ,

1 1 2
2, ,

 – 1, ,  –  2, ,
1 1 2

d t t i t t t t
dt

d t t i t t t t
dt

α

α

α α ω α ω α

α α ω α ω α

Ψ
= ∆ Ψ + Ψ

Ψ
= Ψ ∆ Ψ

    (9)

This system of equations can be easily solved 
numerically for any combination of RF functions us-
ing standard platforms such as Mathematica 11.1 
using the NDSolve Function [19].

In Figure 1 we show the sample numerical solu-
tion of these equations in the time domain for the 
specified conditions.

We next move onto apply the textbook defini-
tion of the density matrix elements for a spin ½ par-
ticle using these numerically solved wavefunctions. 
We assert the following form:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11

22

12

21

,   1, , * 1, ,
,   2, , * 2, ,  
,   1, , * 2, ,
,   2, , * 1, ,

t t t
t t t
t t t
t t t

σ α α α
σ α α α
σ α α α
σ α α α

= Ψ Ψ
= Ψ Ψ
= Ψ Ψ
= Ψ Ψ

              (10)

So, we can then easily define the density matrix 
in matrix form as:



• Page 3 of 5 •Sorce. Int J Magnetics Electromagnetism 2020, 6:028 ISSN: 2631-5068 |

Citation: Sorce DJ (2020) Fractal Density Matrix for the Case of Time Dependent Radio Frequency Pulses Defined in the First Rotating 
Frame. Int J Magnetics Electromagnetism 6:028

a)
 

 

 
b)

 

 

c)
Figure 1: (a,b,c) Dotted Line is the Numerical Solution Bloch equations for a Sin-Cos Pulse. The Full Line is the 
Profile form the Density Matrix with an alpha of 1 for Mx, My and Mz for Figure 1a, Figure 1b and Figure 1c 
respectively. As can be seen the agreement is excellent.
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( ) ( ) ( )
( ) ( )

11 12

21 22

, ,
,   

, ,Mat

t t
t

t t
σ α σ α

σ α
σ α σ α

 
=  

 
       (11)

We next choose to write the equation for the 
Time Evolution of the Magnetization in the FRF 
under the Radio Frequency Hamiltonian using 
the Schroedinger Picture in Quantum Mechanics 
[20,25] as:

( ) ( )( )
( ) ( )( )
( ) ( )( )

 ,  , .

 ,  , .  

 ,  , .

x Mat x

y Mat y

z Mat z

M t Tr t I

M t Tr t I

M t Tr t I

α σ α

α σ α

α σ α

=

=

=

        (12)

We next note that we compare the time profiles 
for the magnetization given in Eqs(12) with the nu-
merical solution of the system of Bloch equations 

without relaxation with the RF on x as:
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( )

(

–1

–1

1

–1

1

)

( )

,
 ,

1 1
,

 ,  ,
1 1

,
 ,

1 1

x
y

x z

y

y

z

dM t t t M t
dt

dM t t t M t t M t
dt

dM t t t M t
dt

α

α

α

α α ω α

α α ω α ω α

α α ω α

= ∆

= − ∆ +

= −

      (13)

We choose to test the Magnetization Profiles 
generated from the numerical solution of these 
equations under a Sin/Cos RF Pulse [3,26].

We take the definition:
( )

( )

max max
1 1

max max
1 1 1

( Cos

S ) (in

)t t

t t

ω ω ω

ω ω ω

∆ =

=
        (14)

We use the assignment max
1  2ω π= 625.0 Hz as 

used in applications [3,26].

 
a) 

 

b)
 

Figure 2: (a,b) Dotted Line is the Numerical Solution Bloch equations for a Sin-Cos Pulse. The Full Line is the 
Profile form the Density Matrix with an alpha of 0.9 for My for Figure 2a, Dotted Line is the Profile form the 
Density Matrix with an alpha of 0.6 for My Figure 2b respectively. As can be seen the agreement is excellent.
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17. R Metzler, J Klafter (2000) The random walk’s guide 
to anomalous diffusion: A fractional dynamics ap-
proach. Physics reports 339: 1-77.
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chastic liouville equation in nuclear magnetic reso-
nance: Application to R1rho relaxation in the pres-
ence of exchange. Concepts Magn Reson 19A: 134-
148.

19. W Chen (2006) Time-space fabric underlying anom-
alous diffusion. Chaos, Solitons and Fractals 28: 923-
929.

20. C Slichter (1996) Principles of magnetic resonance. 
Springer-Verlag, New York, USA.

21. J Blicharski (1972) Nuclear magnetic relaxation in ro-
tating frame. Acta Phys Pol A 41: 223-236.

22. M Fisher, A Majumdar, E Zuiderweg (1998) Protein 
NMR relaxation: Theory, applications and outlook. 
Progr NMR Spectr 33: 207-272.

23. DJ Sorce, S Mangia, T Liimatainen, M Garwood, S Mi-
chaeli (2014) Exchange-induced relaxation in the pres-
ence of a fictitious field. J Magn Reson 245: 12-16.

24. AC Redfield (1965) The theory of relaxation process-
es. Adv Magn Reson 1: 1-32.

25. M Goldman (2001) Formal theory of spin-lattice re-
laxation. J Magn Reson 149: 160-187.

26. T Liimatainen, DJ Sorce, RO’Connell, M Garwood, S 
Michaeli (2010) MRI contrast from Relaxation along a 
Fictitious Field (RAFF). Magn Reson Med 64: 983-994.

In Figure 1 we compare the Magnetization Pro-
files for the Cartesian Magnetization from the nu-
merical solution of the Bloch Equations in the FRF 
with the Magnetization Profiles from the Fractal 
Density Matrix. As can be seen for an alpha of 1 the 
two sets of plots are identical. We take this as a first 
indication that the formalism presented here has 
a measure of validity. In Figure 2 we compare the 
solution of the Bloch equations in the FRF for a frac-
tal coefficient of 0.9 and 0.6 with the Profiles from 
the Fractal Density Matrix Trace. As can be seen 
the agreement is very good and gratifying. Further 
word would be required to explore the general ap-
plicability of these density matrix relations for the 
case of alpha between zero and 1 to modeling mag-
netization resulting from spin ½ nuclei in tissue.
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