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Abstract
We demonstrate coherence amplification in off-diagonal density matrix elements for a 
decoherence model for spin ½ particles with applied radio-frequency pulse without relaxation. 
The method of coherence amplification developed may be of general utility in applications in 
NMR/MRI.
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Introduction
The manifestation of coherence phenomena is a hallmark of quantum mechanics, differentiating it 

from classical phenomenon due to the property of superposition in quantum reality due to the linearity of 
the Schroedinger equation [1-4].

Methods of possible amplification of coherence as quantitated by the absolute value of off-diagonal 
density matrix elements, may be of use in applications such as quantum computing [5] and MRI tissue 
contrast [6,7].

In the Letter, we develop a Possible Methodology of Coherence Enhancement. It is easily implemented 
and may have value in Venues of NMR/MRI [8].

Formalism Development
We base our Treatment on the Following Expression often used in Formalism of Coherence [1,9].

ˆ[ ] ˆ ˆ ˆˆ ˆ[ [ ], [ ]] [ ][ [ ],[ [ ], [ ]]]RF dph RF RF
d t I H t t H t H t t

dt
ρ ρ τ ρ= − − Τ                   (1)

Here, ˆ[ ]tρ  is the time-dependent Density Matrix. ˆ [ ]RFH t  is a Time Dependent Radio-Frequency 
Hamiltonian, defined as:

1
ˆ [ ] [ ] [ ]RF x zH t I w t I w t= + ∆                       (2)
ˆ ,I x zαα =  are Spin ½ Angular Momentum Operators [8] . The Radio-Frequency terms 1[ ]w t  and [ ]w t∆  

are respectively, Amplitude and Frequency Offset Variable defined in Appendix I.



• Page 2 of 5 •Sorce. Int J Magnetics Electromagnetism 2021, 7:037 ISSN: 2631-5068 |

Citation: Sorce DJ (2021) Coherence Amplification in Off-Diagonal Density Matrix Elements. Int J Magnetics Electromagnetism 7:037

2[ ] B
dph dph

k T
h

τ τΤ =
/

                      (3)

Here, Bk  is Boltzmann’s Constant.
h/ is Temperature in Kelvins.

h/ is Planck’s Constant Divided by 2π .

dphτ  is a Time Constant Characterizing the Decoherence.

For the Specific Cases Treated here, to Explore a Model of Coherence Enhancement Effects, we 
specialize to the HS1 Adiabatic Pulse as detailed by Garwood, et al. [10] [see Appendix II].

 If one substitutes Eq (2) into Eq (1), one obtains after “straightforward but tedious algebra”:

2 2
1

2
1

ˆ[ ] ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ [ ], [ ]] [ ]( [ ] [ ] [ ] [ ]

1̂ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ] [ ] [ ] [ ]( [ ] [ ] ))
4

RF dph x x z z

eff x z z x

d t I H t t w t I t I w t I t I
dt

w t t w t w t I t I I t I

ρ ρ τ ρ ρ

ρ ρ ρ

= − + Τ + ∆

− + ∆ +
                           (4)

Where:
2 2 2

1[ ] [ ] [ ]effw t w t w t= + ∆                       (5)

And:

1̂  is the 2 by 2 Identity Matrix.

For Clarity and Completeness, we Explicitly Define the Following Terms:

11 12

21 22

[ ] [ ]
ˆ[ ] ( )

[ ] [ ]
t t

t
t t

ρ ρ
ρ

ρ ρ
=                      (6)

We adopt the Standard Definition of the Spin-1/2 Cartesian Spin Angular Momentum Operators

As:

, , ,
1 1 1ˆ ˆ ˆ
2 2 2x x y y z zI I Iσ σ σ= = =                                (7a)

0 1 0 1 0
ˆ ˆ ˆ( ), ( ), ( ),

1 0 0 0 1x y z

I
I

σ σ σ
−

= = =
−

                                (7b)

Where, Eqs (7b) are the Pauli Matrices [9].

If one substitutes Eqs (5,6,7a-b) into Eq (4) one finds after manipulations the following set of four first 
order differential equations in time for the four matrix elements of the defined Density Matrix. We note 
that the derived system of equations below were numerically verified versus Eq(9) below:

211
1 21 12 1 22 11 1 21 12

[ ] 1[ ]( [ ] [ ]) [ ] ( [ ]( [ ] [ ]) [ ] [ ]( [ ] [ ]))
2 4dph

d t I w t t t w t t t w t w t t t
dt

ρ ρ ρ τ ρ ρ ρ ρ= − − + Τ − + ∆ +             (8a)

22 11[ ] [ ]d t d t
dt dt

ρ ρ
= −                   (8b)

2 212
12 1 22 11 1 21 12 12 1 11 22

[ ] 1(2 [ ] [ ] [ ]( [ ] [ ]) [ ] ( [ ]( [ ] [ ]) 2 [ ] [ ] [ ] [ ]( [ ] [ ]))
2 4dph

d t I w t t w t t t w t t t w t t w t w t t t
dt

ρ ρ ρ ρ τ ρ ρ ρ ρ ρ= − ∆ + − + Τ − − ∆ + ∆ −          (8c)

2 221
21 1 22 11 1 21 12 12 1 11 22

[ ] 1(2 [ ] [ ] [ ]( [ ] [ ]) [ ] ( [ ]( [ ] [ ]) 2 [ ] [ ] [ ] [ ]( [ ] [ ]))
2 4dph

d t I w t t w t t t w t t t w t t w t w t t t
dt

ρ ρ ρ ρ τ ρ ρ ρ ρ ρ= ∆ + − − Τ − + ∆ − ∆ −          (8d)

We note that for ease of manipulation and coding, one can rewrite Eqs (1) as:
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Figure 1a: 11[ , ]t fσ τ α .

Figure 1b: 12[ , ]t fσ τ α .

Figure 1c: 21[ , ]t fσ τ α .

2 2ˆ[ ] 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( [ ] [ ] [ ] [ ]) [ ] (2 [ ] [ ] [ ] [ ] [ ] [ ] [ ])
2RF RF dph RF RF RF RF

d t I H t t t H t H t t H t H t t t H t
dt
ρ ρ ρ τ ρ ρ ρ= − − + Τ − −             (9)

Using a Numerical Platform such as Mathematica [11] one can readily Numerically Solve the four 
Differential equations Eqs (8 a,b,c,d) to obtain the Time-Dependent Matrix Elements [ ]; , 1, 2ij t i jρ = .
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Results
In Figure 1a, Figure 1b, Figure 1c and Figure 1d we see plotted the [ , ]dpht τ  dependence in Three-

Dimensional Figures of the Four Density Matrix elements which are numerical solutions of Eqs [8a,b,c,d]. 
We note that the density matrix elements are considered dimensionless [4,6,8,9]. One can readily see 
there are Maxima at [0.002 , 1.068]fs τ  51.010f sτ −=  over the domain considered.

In Summary, the Key Results of this effort, is the finding of Maxima for the dependence of Density 
Matrix element which indicate amplification of the coherences and populations for spin ½ nuclei which 
are solutions of the system of Eqs [8a,b,c,d] that incorporate Decoherence effects at [ , ]dpht τ . The system 
of Eqs [8] are to the knowledge of the author unique to the Magnetic Resonance literature.

Such Enhancement may prove to be of utility in Biomedical Applications in NMR/MRI, because the 
spin angular momenta can be expressed as sums and differences of the spin-1/2 Density Matrix elements 
which can be shown to exhibit pronounced amplification that are proportional to the Magnetization.
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Appendix I:
Definition of Adiabatic HS1 Pulse as defined by Garwood, et al. [10].

1 1
2[ ] Sech[ ( 1)]

2[ ] Tanh[ ( 1)]

Max

p

A
p

tw t w
t

tw t A
t

β

βΛ

= −

∆ = Ω − −

4 1
1

1

4 1

10
5000.0
10

Max

A

w s
s

A s

π

π

−

−

−
Λ

=

Ω =

=
tp is the Period of the Pulse.

Tan[0.01]Arcβ =  

Appendix II:
Outline of Derivation of Eqs [8 a,b,c,d].

We begin the development by restating Eq [4] of the Main Text:

2 2
1

2
1

ˆ[ ] ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ [ ], [ ]] [ ]( [ ] [ ] [ ] [ ]

1̂ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ] [ ] [ ] [ ]( [ ] [ ] ))
4

RF dph x x z z

eff x z z x

d t I H t t w t I t I w t I t I
dt

w t t w t w t I t I I t I

ρ ρ τ ρ ρ

ρ ρ ρ

= − + Τ + ∆

− + ∆ +
            AII (1)

We define the Following Terms:

11 12

21 22

[ ] [ ]
ˆ[ ] ( )

[ ] [ ]
t t

t
t t

ρ ρ
ρ

ρ ρ
=                  AII (2)

22 21

12 11

[ ] [ ]1ˆ ˆˆ[ ] ( )
[ ] [ ]4x x

t t
I t I

t t
ρ ρ

ρ
ρ ρ

=                 AII (3)

11 12

21 22

[ ] [ ]1ˆ ˆˆ[ ] ( )
[ ] [ ]4z z

t t
I t I

t t
ρ ρ

ρ
ρ ρ

−
=

−
               AII (4)

21 22

11 12

[ ] [ ]1ˆ ˆˆ[ ] ( )
[ ] [ ]4x z

t t
I t I

t t
ρ ρ

ρ
ρ ρ

−
=

−
                AII (5)

12 11

22 21

[ ] [ ]1ˆ ˆˆ[ ] ( )
[ ] [ ]4z x

t t
I t I

t t
ρ ρ

ρ
ρ ρ

=
− −

                            AII (6)

11 1 21 12

22 1 21 12

1ˆ ˆ ˆ ˆ[ [ ], [ ]] [ ]( [ ] [ ])
2

1ˆ ˆ ˆ ˆ[ [ ], [ ]] [ ]( [ ] [ ])
2

RF

RF

H t t w t t t

H t t w t t t

ρ ρ ρ

ρ ρ ρ

= −

= − −
               AII (8 a,b,c,d)

12 12 1 22 11
1ˆ ˆ ˆ ˆ ˆ[ [ ], [ ]] (2 [ ] [ ] [ ]( [ ] [ ]))
2RFH t t w t t w t t tρ ρ ρ ρ= ∆ + −

21 12
ˆ ˆˆ ˆ[ [ ], [ ]] [ [ ], [ ]]RF RFH t t H t tρ ρ= −

If one substitutes Eqs AII ( 2-8) into Eq AII(1) one obtains Eqs (8 a,b,c,d).
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