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Introduction
Enhancing the safe operation of nuclear reactors is of 

upmost importance for meeting future energy demands 
[1]. Currently zircaloy is used as a fuel cladding material 
which has many desirable characteristics under moder-
ate conditions. However, in extreme conditions hydro-
gen generation can become extremely problematic and 
as such research into alternative cladding materials has 
received greater interest [2]. Iron-based stainless steels 
have been proposed as one alternative material due to 
having several desirable characteristics: 1) High corro-
sion resistance even in extreme conditions, 2) Chemical-
ly stable at high temperatures, 3) No α’ embrittlement 
that can plague ferritic/martensitic (F/M) steels under 
radiation [3]. Austenitic stainless steels carry with them 
their own set of issues, chiefly the well-known issue of 
void swelling at relatively low dpa [4-6].

Abstract
A mechanically alloyed austenitic stainless steel (MA304LZ) was produced from pre-alloyed 
SUS304L powder with 0.7% wt of Zr addition. The precipitates had a bimodal size distribution 
causing strengthening of MA304LZ with 3.3 times larger yield stress than SUS304L, although the 
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Creating an ideal material for use in nuclear appli-
cations would need to have sufficiently high strength 
at high temperatures, high corrosion resistance, and a 
high degree of radiation tolerance. Currently much re-
search has been completed on F/M steels with the ad-
dition of nano-sized oxides which have been shown to 
improve several characteristics of the F/M steels such as 
radiation tolerances and yield strength through several 
mechanisms [7-9]. Especially, Kimura, et al. developed 
15Cr-5Al-ODS ferritic steels added with small amount 
of Zr [10-14] which showed a significant strengthening 
of Al-added ODS steels, which was due to the alternation 
of the lower number density of coarse (Y, Al) oxides with 
higher number density of fine (Y, Zr) oxides [10,15,16].

Subsequently, the addition of nano-sized oxide parti-
cles can be used to improve the void swelling issue and 
relatively lower strength of austenitic stainless steel in 
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order to take advantage of the high corrosion resistance 
and favorable high temperature stability. These oxide 
dispersion strengthened (ODS) austenitic steels will be 
greatly dependent on the structural and chemical nature 
of the oxide particles formed [3].

In our previous work, we reported the high yield 
strength of 767 MPa in a mechanically alloyed austenitic 
stainless steel with Zr addition (MA304LZ) accompanied 
by the presence of nano-sized precipitate formation and 
its effects on the microstructure [17], the yield strength 
of 304L SS was around 230 MPa. Although precipitates 
were observed in the previous study, the exact chemical 
compositions remained unclear. The formation of ZrN, 
ZrC, or ZrO2, were the most likely candidates and each 
have unique properties which can affect the overall ma-
terial differently [18-22]. In this study we present the 
results of in-depth chemical analyses of the precipitates 
which may contribute to the strengthening of MA304LZ 
steel.

Experimental
The analyzed austenitic stainless steel (MA304LZ) 

was produced from pre-alloyed SUS304L powder and 
high purity (99.9%) Zr powder (suspended in water) at 
0.7 wt.%. The mixed powder was obtained by milling in 
a P-5 Fritsch planetary ball mill at 200 rpm for 48 hours 
in an argon environment with a ball-to-powder ratio of 
9:10 in weight. Both the milling balls and milling cham-
ber were composed of SUS304 stainless steel. A rather 
low ball-to-powder ratio along with low rotation speed 
was used to alleviate the affixing issue of the resulting 
powder to the mixing pot which has been encountered 
by previous researchers [3,23]. The milled powder was 
encapsulated in a steel tube and evacuated in a vacuum 
of 1 × 10-3 Pa for degassing. Then consolidated through 
hot isostatic pressing (HIP) at 140 MPa after heating to 
950 °C at a heating rate of 300 °C/h. The consolidated 
bulk material was annealed in Ar gas at 1000 °C for 30 
min followed by quenching into water at ambient tem-
perature. The chemical composition of the steel is shown 
in Table 1.

Two types of specimens were prepared for TEM ob-
servation, extraction replica and bulk electrochemically 
thinned samples. TEM bulk specimens were prepared 
with a Struers twinjet electropolisher at 18 V in a 90% 
CH3OH 10% HClO4 electrolyte at -20 °C. Extraction 
replica samples were produced by applying a thin layer 
of carbon to the surface of MA304LZ after etching with 
aqua regia (HNO3 + HCl) followed by electrochemical-
ly dissolving the matrix and attaching the carbon ex-

traction replica layer to a copper mesh. TEM, EDS, and 
EELS observations were conducted using a JEM 2200FS 
Schottky emission FE-TEM with an accelerating voltage 
of 200 kV.

X-ray diffraction spectroscopy (XRD) was carried 
out on bulk and extraction replica residue of MA304LZ. 
Extraction replica residue specimens were prepared by 
electrochemically dissolving a bulk piece of MA304LZ in 
10% HCl 90% CH3OH followed by vacuum filtering the 
solution. XRD measurements were taken using a Riga-
ku RINT-TTRIII/KE XRD in the range of 2θ = 10°-120° 
with a Co-Kα filament at 250 mA and 40 kV.

Results and Discussion
Crystalline structure

XRD patterns of extraction replica residues are shown 
in Figure 1. Figure 1b is the same residue as that of Fig-
ure 1a but after allowing the sample to sit in air for one 
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Figure 1: XRD spectra of a) Extraction replica residue; b) 
After one week of exposure to air.

Table 1: Chemical Compositions of MA304LZ.

wt.% C Si Mn P S Cr Ni Zr O N Fe
MA304LZ 0.02 Si 0.15 0.018 0.001 19.5 11.18 0.7 0.018 0.074 Bal
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week for observing the changes induced by atmospheric 
effects. The residues were each prepared using the same 
methods and conditions however there are some differ-
ences between these patterns. Electrochemically dissolv-
ing bulk MA304LZ followed by vacuum filtering seems 
to produce varying results making replication difficult, 
however there were some commonly observed values of 
2θ which are denoted in Figure 1a with arrows and list-
ed in Table 2. The atmospherically contaminated sample 
showed very significant differences from a week of ex-
posure to air, most notably is the appearance of several 
reflections below 35° and the disappearance of all the re-
flections above 80°. The XRD pattern of bulk MA304LZ 
was previously reported in [17] with only a few reflec-
tions that were consistent with an γ-phase structure while 

containing a small amount of α’-phase (110), which is 
considered to be deformation induced martensite in un-
stable 304L type austenitic stainless steel.

The consistently observed reflections at or near 2θ = 
36.7, 42.6, 74.3 suggest the presence of FCC phase ZrO2 
[24]. After aging in air for one week these reflection lo-
cations remained, however the new reflections at 2θ = 
40.3, 41.2, 59.71, 63.8 are consistent with tetragonal ZrO2 
suggesting that exposure to air allows for the formation 
of tetragonal crystalline structure of ZrO2 [25]. Howev-
er, the inconsistent XRD spectra across samples make it 
difficult to exclude the possibility of carbide or nitride 
formation.

Chemical compositions
Conventional TEM and STEM images of bulk and 

extraction replica samples are shown in Figure 2a and 
Figure 2b, respectively. In our previous work, observed 
precipitates were found to have a large variation in size 
and number density particularly in the homogeneity of 
distribution (larger precipitates were found to have a 
more homogeneous distribution while smaller precipi-
tates had a rather inhomogeneous distribution) [17]. The 
particle size in the extraction residue for XRD measure-
ment matches those observed by STEM.

Energy dispersive spectra (EDS) of bulk samples are 
shown in Figure 3 and confirmed that the precipitates 
were Zr-rich however matrix interference made it im-
possible to confirm or exclude the existence of oxides, 
carbide, or nitrides. EDS observations of over 30 precip-
itates and precipitate clusters were conducted, a repre-
sentative precipitate found in the extraction replica sam-
ples is shown in Figure 4. All the analyzed precipitates 
demonstrated a high concentration of both Zr and O in 
ratios that correlate with ZrO2, however, no nitrides or 
carbides were observed. Additionally, a tendency for the 
precipitates to conglomerate together was also observed 
in several extraction replica samples. The electron ener-
gy loss spectrum (EELS) of several precipitates in a bulk 
sample was conducted to determine the presence of ni-
trogen and is shown in Figure 5. An EELS peak at 401 
eV is expected for nitrogen, however no such peak was 
observable.

Oxide particle dispersion is well known as a strength-
ening mechanism of metallic materials, where the na-
no-sized particles in high number density are obstacles 
for dislocation motion, and inter-particle distance is crit-
ical to determine strengthening [10-14]. In the present 
material (MA304LZ) an addition of a small amount of 
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Figure 2: Conventional TEM bright field of a) Bulk sample 
precipitates; b) Scanning mode of extraction replica precip-
itate group.

(a) Consistent 20.78 27.93 32.34 34.91 36.64 42.56 51.03 57.72 59.53 66.22 70.97  
(b) Retained after aging 20.75 27.95 36.68 40.21 42.73 45.63 51.09 57.74 59.22 66.42 70.88 74.3

Table 2: Averaged values of XRD reflection locations appearing more than once (a) Un-aged extraction residue, (b) After 1-week 
exposure to air.
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Figure 3: EDS map of precipitates in a bulk sample.
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Figure 4: EDS spectra and mapping of extraction replica precipitate group.
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formation of nitride nor carbide was observed in this 
study, which resulted in maintaining the strengthening 
of Zr-added MA304L austenitic stainless steel.

Conclusions
A mechanically alloyed austenitic stainless steel 

(MA304LZ) was produced from pre-alloyed SUS304L pow-
der added with 0.7% wt. of Zr. The combined observations 
of XRD, TEM, EDS, and EELS lead to several conclusions 
about precipitation behavior in MA304LZ.

Zr resulted in the formation of ZrO2 of which the aver-
aged diameter was 6.0 nm [17]. Although the oxides are 
more stable than nitrides and carbides based on thermo-
dynamics, the largest concern was the contamination of 
nitrogen from air during exposure of mixed powder to 
air and carbon from the Cr-C steel balls during mechan-
ical alloying. This contamination may cause consump-
tion of Zr and reduce the total amount of fine ZrO2, and 
consequently reducing the yield strength of MA304LZ 
steel. However, it can be concluded that no remarkable 
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Figure 5: EELS of precipitates in a bulk sample.



• Page 6 of 6 •

Citation: Morrall D, Gao J, Zhang Z, Yabuuchi K, Kimura A, et al. (2018) Characterization of Precipitates in Mechanically 
Alloyed SUS304L Type Steel with Zirconium Addition. Int J Metall Met Phys 3:015

Morrall et al. Int J Metall Met Phys 2018, 3:015 ISSN: 2631-5076 |

10.	A Kimura, R Kasada, N Iwata, H Kishimoto, CH Zhang, et 
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fuel cladding of next generation nuclear systems. Journal of 
Nuclear Material 417: 176-179. 

11.	A Kimura, S Ukai, M Fujiwara (2003) Development of fuel 
clad materials for high burn-up operation of LWR. Interna-
tional Conference on Global Environment and Advanced 
Nuclear Power Plants, Kyoto Research Park, 15-19. 
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ferritic steels. Journal of ASTM International 4: 100701.
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15.	P Dou, A Kimura, T Okuda, M Inoue, S Ukai (2011) Poly-
morphic and coherency transition of Y-Al complex oxide 
particles with extrusion temperature in an Al-alloyed high-
Cr oxide dispersion strengthened ferritic steel. Acta Mate-
rialia 59: 992-1002.

16.	P Dou, A Kimura, R Kasada, T Okuda, M Inoue (2014) TEM 
and HRTEM study of oxide particles in an Al-alloyed high-
Cr oxide dispersion strengthened steel with Zr addition. 
Journal of Nuclear Material 444: 441-453.

17.	D Morrall, J Gao, Z Zhang, K Yabuuchi, A Kimura, et al. (2018) 
Tensile properties of mechanically alloyed Zr added austenitic 
stainless steel. Nuclear Materials and Energy 15: 92-96.

18.	X Ren, Z Peng, C Wang, Z Fu, L Qi, et al. (2015) Effect 
of ZrC nano-powder addition on the microstructure and 
mechanical properties of binderless tungsten carbide fab-
ricated by spark plasma sintering. International Journal of 
Refractory Metals and Hard Materials 48: 398-407. 

19.	XJ Zhao, DL Chen, HQ Ru, N Zhang (2011) Zirconium ni-
tride nano-particulate reinforced Alon composites: Fabrica-
tion, mechanical properties and toughening mechanisms. 
Journal of the European Ceramic Society 31: 883-892.

20.	C Gaglieri, RT Alarcon, R De Godoi Machado, DSS Pado-
vini, FML Pontes (2017) Thermal study of ZrO2 nanoparti-
cles: Effect of heating and cooling cycles on the solid-solid 
transition. Thermochimica Acta 653: 59-61.

21.	O Malek, B Lauwers, Y Perez, P De Baets, J Vleugels (2009) 
Processing of ultrafine ZrO2 toughened WC composites. Jour-
nal of the European Ceramic Society 29: 3371-3378.

22.	P Kempter, RJ Fries (1960) Crystallographic Data. 189. Zir-
conium Carbide. Analytical Chemistry 32: 570.

23.	T Gräning, M Rieth, J Hoffmann, A Möslang (2017) Pro-
duction, microstructure and mechanical properties of two 
different austenitic ODS steels. Journal of Nuclear Materi-
als 487: 348-361.

24.	P Bouvier, E Djurado, G Lucazeau, T Le Bihan (2000) 
High-Pressure structural evolution of undoped tetragonal 
nanocrystalline zirconia. Physical Review B 62: 8731-8737.

25.	E Djurado, P Bouvier, G Lucazeau (2000) Crystallite size 
effect on the tetragonal-monoclinic transition of undoped 
nanocrystalline zirconia studied by XRD and Raman spec-
troscopy. Journal of Solid State Chemistry 149: 399-407.

1.	 XRD observations indicate the presence of ZrO2 with 
an FCC structure, however the existence of ZrN or 
ZrC could not be excluded due to a lack of consisten-
cy in XRD patterns.

2.	 TEM and EDS observations indicated the chemical 
composition of the nanosized precipitates to be ZrO2, 
no ZrN or ZrC were observed in over 30 precipitate 
groups.

3.	 EELS observations clearly demonstrated a lack of ni-
trides or carbide. The addition of high-purity Zr to 
pre-alloyed 304 steel powder in a ball mill seems to 
either exclusively or predominately produce thermo-
dynamically favorable ZrO2 oxides.
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