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Abstract
Optical nonreciprocity and nonreciprocal propagation of light have attracted great research 
interest, due to not only their fundamental scientific significance, but also their extensive 
applications in lasing, quantum optical devices and quantum information. In this work, we 
theoretically and experimentally investigate nonreciprocal propagation of light in a V-type 
three-level thermal atomic system. By virtue of the EIT effect and the atom thermal motion, 
nonreciprocal propagation of light is achieved in the Rb87 warm atoms, where high transmission 
of the probe field is achieved in the co-propagation direction of the control field and the probe 
field is blocked in the opposite direction of the control field. Transmission and bandwidth for the 
nonreciprocal propagation of light can be enhanced and controlled by the control field in this 
system, where the nonreciprocal band width can be broadened significantly in comparison with 
the Λ-type atomic system. In our experiments, we achieve ~60 MHz nonreciprocal bandwidth 
for the probe field. This work may have potential applications in quantum nonreciprocal devices 
such as optical isolator and circulator.

on integration of devices.

Great efforts dedicate to searching for alter-
native approaches and mechanisms to break rec-
iprocity without the use of magnetism, especially 
those for suitable on-chip integration. A photonic 
band gap material with the combination of linear 
and nonlinear medium response previously pro-
posed to support unidirectional propagation and 
optical diode [7]. Spatiotemporal modulation of 
refractive index of materials is one promising ap-
proach for this purpose, which generates optical 
nonreciprocity via introducing nonreciprocal phase 
transfer [8,9] and frequency conversion [10,11], 

Introduction
Optical nonreciprocity and nonreciprocal devic-

es, which supports drastically asymmetric propa-
gation of light in two opposite directions, are es-
sential in optical communications, laser systems 
and signal processing [1]. In recent years, optical 
nonreciprocity has attracted great research inter-
est, and various strategies or physical mechanisms 
are proposed and studied for nonreciprocal trans-
mission of light. Utilization of magneto-optic effect 
is a common approach to break the reciprocity [2-
6]. However, response of magnetic materials often 
performs weak, implying bulky, costly and difficulty 
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or establishing an angular momentum biasing 
[12-14]. Nonmagnetic optical nonreciprocity can 
also be achieved by optoacoustic effects [11,15], 
optical nonlinearity [16-19], and moving systems 
[20-22]. Great research interest were paid on the 
parity-time symmetry [23,24] recently. Using par-
ity-time symmetric system, optical nonreciprocity 
[25] and phonon diode [26] have been studied. 
Due to the rapid development and the flexibility, 
optomechanical systems provide a good platform 
to support nonreciprocal transmission and create 
nonreciprocal devices such as optical isolator, op-
tical circulator and optical router [27-34]. In chiral 
quantum physics, photons propagating in opposite 
directions are of spin-momentum or polarization 
locking, which drives emitters with different tran-
sition levels and rates [35]. It thus naturally offers 
a novel way to support nonreciprocal propagation 
of light even in the quantum regime [36-43]. The 
spin-orbit coupling canal so be used to realize op-
tical nonreciprocity in low-dimensional materials 
[44-46].

Since the electromagnetically induced trans-
parency (EIT) technology was introduced by Har-
ris, et al. [47,48], many interesting quantum opti-
cal phenomena have been observed and realized 
in multi-level quantum systems based on the EIT 
effect, such as electromagnetically induced grat-
ing (EIG) [49-51], four-wave and six-wave mixing 
[52,53], optical bistability and multistability [54,55], 
optical switching [56], Kerr nonlinearity enhance-
ment [57-60], weak-light optical solitons [61-66] 
etc. Via inducing periodic structures by lasers in 
the EIT atomic systems, dipole soliton and optical 
vortices were generated and studied experimen-
tally in thermal atoms [67,68]. The random motion 
of atoms often takes disadvantage on quantum 
coherence in warm atoms. However, utilizing the 
atom thermal motion and EIT effect, our group 
experimentally investigated and achieved optical 
nonreciprocity and isolation in a cavity-atom cou-
pling system [69]. And soon, a scheme of unidirec-
tional amplification of light was also proposed and 
demonstrated in an atomic system [70]. Utilizing 
the optical nonlinearity of cross phase modula-
tion, Xia, et al. theoretically proposed a scheme for 
optical isolator and optical circulator in an N-type 
thermal atomic system [71]. We also proposed a 
scheme to experimentally achieve optical nonrec-
iprocity via optical pump effect in multi-level atom-
ic systems [72]. Our recent experiment demon-

strated that, the nonreciprocal bandwidth can be 
broadened in the cavity-free N-type atomic system 
[73]. Three level V-type atomic system is a very 
common and frequently used quantum system. In 
this work, based on the EIT effect, we experimen-
tally and theoretically investigate the nonreciprocal 
propagation of light in a warm Rb87 V-type atomic 
system. By adjusting the control field, transmission 
and bandwidth can be controlled and enhanced 
for nonreciprocal propagation of the probe field in 
this system. It is shown that, high transmission of 
the probe light is achieved in the co-propagation 
direction of the control field, while it is effectively 
blocked in the opposite direction. In addition, the 
V-type atomic system can provide a relatively wid-
er band width for nonreciprocal propagation of the 
probe light in comparison with the Λ-type atomic 
system. This work may provide reference for broad-
band applications of optical nonreciprocal devices.

Model and Theoretical Analysis
In this work, we consider a weak probe field of 

Rabi frequency pΩ  and a strong control field of 
Rabi frequency cΩ  interacting with a V-type atom-
ic system (as shown in Figure 1). Under the slow-
ly varying envelope and paraxial approximations, 
evolution of the probe field is governed by the fol-
lowing wave equation:

p p
p p2

E k
 = i E

z
χ

∂

∂
. 				           (1)

Transmission of the probe field is determined 
by the macro susceptibility pχ , which can be de-
rived by solving the motion equations of the den-
sity matrix elements under steady states. Under 
electric-dipole and rotating-wave approximation, 
the interacting Hamiltonian can be written in the 
interaction picture as

int c 22 p 33 c 21 p 31( ) ( c )H  = σ σ σ σ− ∆ + ∆ − Ω + Ω + Η. . 
,    (2)

Where p∆  and c∆  indicate the one-photon de-
tunings respectively for the probe and control lasers. 
They are defined as p p 31 = ω ω∆ −  and c c 21 = ω ω∆ −  
with pω  and cω  being the angular frequencies of 
the probe and control lights and ( 31,21)ij ij  = ω  the 
relevant transition frequency between states i  
and j . 2 ( (p,c), (31,21))l ij l = E l  = ij = µΩ ⋅





  
is the half Rabi frequency of the probe (control) 
field with the electric dipole momentum ijµ  for the 
transition i j↔  and the slowly varying electric 
field amplitudes lE



 of the probe and control laser 
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thermal motion. Considering all the atoms follow 
the Maxwell-Boltzman velocity distribution, we 
need to integrate the macro susceptibility pχ  on 
all the velocities of atoms. Then the susceptibilities 
for the forward and backward probe light can be 
written respectively as:

2 (F,B) (F,B)
31 p c13(F,B)

p
0 p

( , )
( )d

N
 = f v v

ρµ
χ

ε
∆ ∆

Ω∫


.      (3)

fields.

The macro polarization for the probe field is 
p 0 p p 13 31P  = E  = Nε χ µ ρ , in which N  is the atom-

ic density, 0ε  is the vacuum permittivity and 31ρ  
represents the corresponding density matrix ele-
ment. As we consider in the warm atomic gas, the 
frequencies of the lasers felt by the atoms depend 
on not only the frequencies of the incident lasers 
but also the frequency shift caused by the atom 
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Figure 1: (Color online) a) Coupling schemes of the V-type atomic model; b) Laser arrangement and experi-
mental setup. PB: Polarized Beamsplitter; PD: Photoelectric Detector; HWP: Half-Wave Plate; PL: Probe Laser, 
CL: Control Laser; Rb: Rubidium Cell; OI: Optical Isolator; AR-Rb: Antireflection Coated Rb Vapor Cell; SAS: The 
Laser System Stabilized on the Saturated Absorption Lines of Rubidium.
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eters are c 0 = ∆ , 105.0 10N  = ×  cm-3, 5.746 = γ  
MHz and 31 21 23 =  =  = γ γΓ Γ , 31 21 2 =  = γ γ γ  
in the V-type atomic system while 31 32 =  = γΓ Γ , 

31 21 2 =  = γ γ γ , 23 0.001 = γ γ  in the Λ-type atom-
ic system, in which ijγ  and ijΓ  indicates the deco-
herence and population decay rates respectively. It 
can be seen in Figure 2 that, the transmission line 
widths VW  and LW  of the forward probe field in-
creases with the Rabi frequency of the control field 

cΩ  (or the intensity of the control field), and the 
transmission line width VW  can be much broader 
than LW  especially for small cΩ . VW  can be dozens 
or even hundreds of times larger than LW  under 
the same cΩ .

Experiment for Nonreciprocal Propagation 
of Light

We experimentally investigate the nonrecip-
rocal propagation of light in a warm V-type Rb87 
atomic system. We select the levels (52S1/2, F = 2), 
(52P1/2, F = 2) and (52P3/2, F = 3) of Rb87 atoms as 
the states 1 , 2  and 3  and set laser couplings 
as shown in Figure 1a. The strong control laser cΩ  
with wavelength of 780 nm is applied to drive the 
transition 1 2↔ . A weak laser pΩ  with wave-
length of 795 nm is used to probe the 1 3↔  
transition. Such consideration of laser excitation 
forms a V-type configuration. The experimental 
setup and laser paths in experiment are laid out as 
shown in Figure 1b. With such arrangement of light 
paths, the coupling lasers cΩ  is vertically polarized 
and the probe laser 

1 2↔
 is parallel polarized when 

Here (F,B) ( p,c)i i i = k v i∆ ∆ + =


  is the effective 
detuning with the wave vector of the lasers k



  and 
the atom velocity v . 2 2

p p( ) exp( ) ( )f v  = v v vπ−  
represents the velocity distribution function of the 
atoms, where p B2v  = k T M  is the most proba-
ble velocity with the Boltzmann constant Bk , the 
absolute temperature T , and the atom mass M . 
The superscript (F, B) indicates the forward or back-
ward propagation direction for short. Similarly, we 
can also obtain the susceptibility for the Λ-type 
atomic system. Transmission of the probe field in 
the two atomic systems can be calculated by Eqs. 
(1) and (3).

When the control field propagates along the 
forward direction, the atomic thermal motion 
gives rise to the same frequency shift on the for-
ward probe field and opposite frequency shift on 
the backward probe field if So transmission of the 
backward probe field can be greatly suppressed 
due to the destruction of EIT, while transmission of 
the forward probe field can maintain a high level. 
Then nonreciprocal propagation of the probe field 
can be achieved in the two opposite directions. The 
nonreciprocal bandwidth is mainly determined by 
the EIT line width of the forward probe field and 
the Doppler line width of the warm atoms. Figure 
2 shows the comparison of the transmission line 
width of the forward probe field in the V and Λ-type 
warm atomic systems by solving the Eqs. (1) and (3) 
directly. In the calculation, the medium length is 5.0 
cm and the temperature is 70 °C. The other param-
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Figure 2: (Color online) Comparison of transmission bandwidth in Λ and V-type thermal atoms. The parameters 
used in the calculation are c 0 = ∆ , 105.0 10N  = ×  cm-3, 5.746 = γ  MHz and 23  = γ γ  ( 23 0.001 = γ γ ) in 
the V-type (Λ-type) atomic system.
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sion of the probe field is greatly suppressed (Figure 
3b). The reason is that, thermal motion of atoms 
gives rise to the same frequency shift of the probe 
field in the forward direction but opposite shift in 
the backward direction compared with the control 
field. So, the EIT condition is always satisfied in the 
forward direction while broken in the backward 
direction. Forward and backward transmissions of 
the probe field at the resonant frequency ( )p 0 = ∆  
are plotted in Figure 3c and Figure 3d respectively. 
The probe field obviously realizes high transmission 
in the forward direction because of the EIT effect 
(Figure 3c). While in the backward direction, trans-
mission of probe field is very low under certain con-
trol powers (Figure 3d). Therefore, nonreciprocal 
propagation of probe field can be achieved in the 
two opposite directions.

We further measure bandwidth of the nonre-
ciprocal propagation by evaluating the full width 
at half maximum (FWHM) of the forward trans-
mission in the EIT window and show the results 
in Figure 4. It can be found that, with the increase 
of Pc, bandwidth of the nonreciprocal propagation 

they pass through the atoms. The cell length of Rb 
is about 5.0 cm and the temperature is set at 70 
°C in experiment. The control laser is locked to be 
resonant with the transition 1 2↔ . For conve-
nience, we define the path from left to right as the 
forward direction whereas the path from right to 
left as the backward direction. In our experiment, 
propagation direction of the control field is fixed to 
be along the forward direction.

Figure 3a and Figure 3b show the transmissions 
of the forward and backward probe fields versus the 
probe detuning and laser power Pc of the control 
field respectively, where the average background 
noise has been erased. As shown in Figure 3a, we 
obtain high transmission for the forward probe field 
near the resonant frequency. The transmission and 
bandwidth depend sensitively on the power of the 
control field Pc. It is obvious that, with the increase 
of Pc, transmission and band width of the probe 
field are significantly enhanced (see Figure 3a). 
Contrarily, as the thermal motion of atoms induc-
es opposite frequency shift for the backward probe 
field and breaks the EIT effect, backward transmis-

Tr
an

sm
iss

io
n

Tr
an

sm
iss

io
n

Tr
an

sm
iss

io
n

Tr
an

sm
iss

io
n

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0
-200 -100 0 100 200

-100 0 100 2005 10
15

20
25

30
35

5 10
15

20
25

30
35

Δp/MHz Δp/MHz
P c/

mW

Pc/mW Pc/mW

P c/
mW

(a) (b)

(c) (d)1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
5      10      15     20     25     30     35 5      10      15     20     25     30     35

Figure 3: (Color online) Transmissions of the probe field under different powers of the control field in the Rb87 
thermal atoms. a) Forward and b) Backward transmissions versus the probe detuning and the control power; 
c) Forward and d) Backward transmissions at the resonant frequency ( )p 0 = ∆ .
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for nonreciprocal propagation of the probe field 
in the V-type atomic system can be enhanced and 
controlled by adjusting the control field. ∼60 MHz 
bandwidth (FWHM) for nonreciprocal propagation 
of the probe field is achieved in experiment. This 
work may provide references for wide band appli-
cations of nonreciprocal light propagation.
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