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Abstract
In this paper the optimal homotopy asymptotic method (OHAM) and multistage optimal 
homotopy asymptotic method (MOHAM) are applied to obtain an analytic approximate solution 
to a time-fractional Klein-Fock-Gordon (FKFG) equation. The FKFG equation plays an important 
role in characterizing the relativistic electrons. The MOHAM relies on OHAM to obtain analytic 
approximate solutions, it actually applies OHAM in each subinterval and we show that it 
achieves better results than OHAM over the large intervals; this is one of the advantages of this 
method which can be used for large intervals and to obtain good results. The convergence of 
the method is also addressed.

Keywords
Optimal homotopy asymptotic method, Multistage Optimal homotopy asymptotic method, 
Convergence, Time-fractional Klein-Fock-Gordon (FKFG) equation

and Gordon have developed an equation called 
Klein-Fock-Gordon, which describes the relativity 
of electrons. This equation is a kind of the wave 
equation, also relates to the Schrödinger equation, 
and is a quantitative version of the relation of rel-
ative energy and motion. This equation is theoreti-
cally similar to the Dirac equation.

Consider the time-fractional Klein-Fock-Gordon 
equation as follows

( ) ( ) ( ) ( ),   , , , ,           1 2,n
xxD u x t u x t au x t bu x tα α= + + < ≤ 	

						             (1)

Subject to the following initial conditions

Introduction
Fractional calculus (FC) is a part of mathematical 

analysis that studies the derivation of integrals and 
derivatives of rational orders [1]. The concept of 
fractional calculus (integrals and derivatives of any 
rational order) is established over 300 years ago, 
and nowadays is a very important subject. Gradu-
ally, researchers in different fields of sciences have 
discovered that fractional differential models have 
much better descriptors for different phenomena. 
Fractional calculus has widespread applications of 
in physics, chemistry, economics, dynamic systems, 
medical engineering, biological sciences, imag-
ing, etc. On the other hand, physicists Klein, Fock, 
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( ,0)  ( )  ( ,0)  ( ),xu x f x and u x g x= = 	        							                  (2)

Where a and b are real constants and n is a positive integer.

The initial guess to the solution is as follows

0 ( , )  ( ) ( ) .u x t f x g x t= +

Various methods have been developed to obtain approximate solutions of the fractional time dif-
ferential equations such as, fractional Jacobi collocation method [2], homotopy perturbation transform 
method [3], homotopy analysis transform method [4], Adomian decomposition method [5], variational 
iteration [6], and homotopy analysis method [7]. Recently, Optimal homotopy analysis method (OHAM) 
was proposed by Marinca, et al. [8-12], which was used to obtain analytic approximate solutions for some 
nonlinear problems [13-17].

OHAM results in to satisfactory solutions on short domains, but when the interval becomes longer, 
the accuracy of the method decreases, so a new approach was proposed by Anakira, et al. which is called 
multistage optimal homotopy asymptotic method (MOHAM) that suitable for analytic approximate 
solutions for large intervals [18].

Finally, the approximate solutions obtained from both methods are compared with the exact solution.

Basic Definitions of Fractional Calculus
In this section, some basic definitions of fractional calculus are explained briefly [1,19].

Definition 4.1: A real-valued function ( )f t  with 0t >  can be defined on the space Cµ , µ ∈ , if there 
is a real number such ρ µ>  that 1( ) ( )pf t t f t= , where 1( ) (0, )f t ∈ +∞  and it is defined on the space nCµ , 
if and only if ( ) ,   .nf t C for nµ∈ ∈

Definition 4.2: The Riemann-Liouville’s integral of fractional order 0α >  for a continuous function 
f Cµ∈  with 1µ > −  is defined as follows

1

0

1( )  ( ) ( ) ,         0,
( )

t

J f t t s f s dsα α α
α

−= − >
Γ ∫        							                  (3)

0 ( )  ( ).J f t f t= 				           							                   (4)

By considering f Cµ∈ , 1µ > − , , 0α β >  and 1γ > − , the main properties of the operator J α  are listed 
as follows

(1) ( )  ( ),J J f t J f tα β α β+= 		          							                  (5)

(2) ( )  ( ),J J f t J J f tα β β α= 		          							                  (6)
( 1)(3)   .

( 1)
J t tα γ α γγ

α γ
+Γ +

=
Γ + +

		          							                  (7)

Definition 4.3: The fractional-order derivative of ( ),f t  in Caputo sense, is defined as follows

1

0

1( )  ( ) ( ) ,
( )

t
m mD f t t s f s ds

m
α α

α
− −= −

Γ − ∫      							                  (8) 

1 1 ,  ,  0,  .mfor m m m t f Cα −− < ≤ ∈ > ∈ 	

Lemma 4.1: By assuming 11 ,  ,  ,mm m m f Cα −− < ≤ ∈ ∈  and 1µ ≥ − , the following properties will be 
valid.

(1) ( )  ( ),D J f t f tα α = 			          							                  (9)

1
( )

0
(2) ( ) ( )  ( ) (0 )

!

km
k

k

tJ D f t f t f
k

α α
−

+

=

= − ∑ .	      							                (10)
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Basic Principles of the Proposed Techniques
A short introduction to the methods that will be used in this research.

OHAM
Let’s consider the following fractional equation with the boundary conditions

( )( ( )) ( ( )) ( )  0,        ( ( ), )  0,duL u N u f B u
d

ξξ ξ ξ ξ
ξ

+ + = =    				                           (11)

Where ξ  is an independent variable, ,  ,  L f N , and ( )u ξ  represent, respectively a linear operator, a 
nonlinear operator, a known function, and an unknown function. Also, ( ( ))B u ξ shows a boundary oper-
ator.

An optimal convex homotopy ( ( ; , )) : [0,1]ip cϕ ξΗ Ω× →  is constructed as follows,

( ( ; , ))  (1 )[ ( ( ; , )) ( )]  
                          ( ; , )[ ( ( ; , )) ( ) ( ( ; , ))],      ( ( ; , ))  0.

i i

i i i i

p c p L p c f
H p c L p c f N p c B p c

ϕ ξ ϕ ξ ξ
ξ ϕ ξ ξ ϕ ξ ϕ ξ

Η = − + =

+ + =
 	 	          (12)

A deformation equation of zero-order as the following 
( , )(1 )[ ( ( , )) ( )]  ( )[ ( ( , )) ( ) ( ( , ))],    ( ( , ), )  0,d pp L p f H p L p f N p B p
d

ϕ ξϕ ξ ξ ϕ ξ ξ ϕ ξ ϕ ξ
ξ

− + = + + = 	          (13)

Where p is an embedding parameter in the interval [0,1],  ( , )H p ξ , is an auxiliary function with non-ze-
ro and zero outputs for 0p ≠  and   0p = , respectively and 0 ( )u ξ represents the initial condition of ( )u ξ , 
and ( , )pϕ ξ  is an unknown function. By inserting   0p =  and 1 into Eq. (13), the following functions are 
obtained

0( ,0)  ( ),uϕ ξ ξ=  				         							                (14)

( ,1)  ( ).uϕ ξ ξ= 				         							                (15)

Therefore, ( , )pϕ ξ  will change continuously from the initial guess to the solution, 0 ( )u ξ , to ( )u ξ  when 
p  increase from 0  up to 1.

By putting  = 0p  into Eq. (13), the initial solution 0 ( )u ξ  is determined as a solution for the problem 

0
0 0( ( )) ( )  0,     ( , )  0.duL u f B u

d
ξ ξ

ξ
+ = = 	     							                 (16)

Next, choose an auxiliary function ( )H p  in the following form
2 3

1 2 3( )   ... ,H p p c p c p c= + + + 		       							                (17)

Where 1 2 3, , ,...c c c  are called the convergence control parameters, that will be determined later. The 
auxiliary function ( )H p  can be expressed in other forms see the paper by Herisanu and Marinca [8].

By expanding ( ; , )ip cϕ ξ  in Taylor’s series about p , the following expansion will be obtained

0 1 2
1

( ; , )  ( ) ( , , ,..., ) m
i m m

m
p c u u c c c pϕ ξ ξ ξ

∞

=

= + ∑    						               (18)

By putting Eqs. (14-18) into (13), and equating the coefficients of the terms with identical powers of p
, one will obtain the governing equation of the initial approximation 0 ( )u ξ , given by Eq.(16), and then the 
governing equation of the first order problem is defined as

1
1 1 0 0 1( ( )) ( )  ( ( )),     ( , )  0.duL u f c N u B u

d
ξ ξ ξ

ξ
+ = =   							               (19)

And the governing equation of the mth order is defined as
1

1 0 0
1

( ( )) ( ( ))  ( ( )) [ ( ( ))
m

m m m j m j
j

L u L u c N u c L uξ ξ ξ ξ
−

− −
=

− = + +∑  
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0 1 1( ( ), ( ),..., ( ))],      ( , )  0,      2,3,...m
m j m m

duN u u u B u m
d

ξ ξ ξ
ξ− − = =  				             (20) 

Where 0 1( ( ), ( ),..., ( ))m mN u u uξ ξ ξ  is the coefficient of mp  in the expansion of ( ( , ))N pϕ ξ  about the 
embedding parameter p

0 0 0 1
1

( ( , ))  ( ( )) ( ( ), ( ),..., ( )) .m
m m

m
N p N u N u u u pϕ ξ ξ ξ ξ ξ

∞

=

= + ∑ 			    		           (21)

Solving Eq. (20) gives various approximates solutions 1 2( , , ,..., )m mu c c cξ , but there exist still m un-
knowns, auxiliary parameters, 1 2 3, , ,.., mc c c c  in the obtained solutions. It is assumed that the auxiliary pa-
rameters 1 2 3( , , ,.., )mc c c c , the linear operator L , and the deformation equation of the zero order (16) are 
appropriately determined in order to ensure the convergence of the series (18) at   1p = . Hence, putting 
Eqs. (14) and (15) into Eq. (18) for   1p =  gives the solution ( )u ξ  as

1 2 0 1 2
1

( , , ,...)  ( ) ( , , ,..., )m m
m

u c c u u c c cξ ξ ξ
∞

=

= + ∑ . 							                 (22)

The approximate solution of Eq. (11) can be calculated as

0 1 2
1

( , )  ( ) ( , , ,..., ).
m

i i k
k

u c u u c c cξ ξ ξ
=

= + ∑  								                 (23)

Substitution of Eq. (23) in Eq. (11), results in the following residual 

( , )  ( ( , )) ( ),        1, 2,3,...i iR c L u c f iξ ξ ξ= + = . 	  		   	  			             (24) 

By supposing that ( , )  0iR cξ = , the exact solution will be ( , )iu cξ . However, such a case could not be 
true for a nonlinear equation. By least squares technique the functional ( )iJ c  should be minimized 

2( )  ( , ) ,
b

i i
a

J c R c dξ ξ= ∫ 	  	  	  							                 (25)

Where a and b are two values relating to the problem in hand. The optimal values of the unknown 
coefficients  (   1, 2,..., )ic i m=  can be determined based on the following conditions

1 2 3

      ...  
m

J J J J
c c c c

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
. 	      (26)

In order to get an analytic approximate solution at the level m , the obtained optimal coefficients will 
be substituted in Equation (23).

MOHAM
Although the OHAM is used to obtain approximate solutions of nonlinear problems. It has some disad-

vantage in nonlinear problems with large domain. To control this drawback, we introduce in this section 
a multistage OHAM to obtain the nonlinear problem with long of the domain. A simple way to confirm 
the validity of the approximate solutions of large T is by dividing the interval [0,  ]T  in to subinterval as 

0 1 1[ ,  ),...,[ ,  ],j jt t t t−  where   jt T= and utilizing the MOHAM solution on each subinterval. The initial ap-
proximation in each interval is given from the solution in prior interval. First, by considering the following 
initial condition

( )  .i j iy t α= 				         							                (27)

then we can obtain the initial approximation ,0 ( )  iy t α=  and the following zero-order equation

,0(1 )[ ( ( , )) ( )]  ( )[ ( ( , )) ( ) ( ( , ))].i i i i i i ip L t p y t H p L t p f t N t pϕ ϕ ϕ− − = + + 		   		           (28)

Next, we pick out the auxiliary function ( )iH p  in the form
2 3

1, 2, 3,( )  ...,i j j jH p c p c p c p= + + + 	      							                 (29)

Or
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1, 2, 3,( )  ( ...) .i j j jH p c c c p= + + + 		       							                (30) 

Then, the first, second and mth order-approximate solutions can be generated subject to initial condi-
tion ,1 ,2 ,( )  ( )  ...  ( )  0,i j i j i m jy t y t y t= = = =  and the approximate solution as follows,

1, 2, , ,0 , 1, 2, ,
1

( , , ,..., )  ( ) ( , , ,..., ).
m

i j j m j i i k j j k j
k

y t c c c y t y t c c c
=

= + ∑  					              (31)

Substituting Eq. (31) into Eq. (11) yields the following residual 

1, 2, , 1, 2, , 1, 2, ,( , , ,..., )  ( ( , , ,..., )) ( ) ( ( , , ,..., )).i j j m j i j j m j i i i j j m jR t c c c L y t c c c f t N y t c c c= + + 		           (32)

If 0iR = , then iy  will be the exact solution. Generally, such a case will not arise for nonlinear problems, 
but we can minimize the function

2
1, 2, , 1, 2, ,( , ,..., )  ( , , ,..., ) ,

j

j

t h

i j j m j i j j m j
t

J c c c R t c c c dt
+

= ∫ 					                           (33)

Where h is the length of the subinterval 1,j jt t +    and   [ / ]N T h=  the number of subinterval. Now, 
we can solve Eq. (33) for   0,1,...,j N= with changing the initial approximation iα in each subinterval 
from the solution in the last point of the prior interval. The unknown convergence control parameters 

, (   1, 2,3,..., ,    1, 2,3,..., )i jc i m j N= =  can be obtained by solving the following system of equations

1, 2, ,

    ...    0.i i i

j j m j

J J J
c c c

∂ ∂ ∂
= = = =

∂ ∂ ∂
 			                                                                              (34)

Thus, the analytic approximate solution will be as follows

1 0 1

2 1 2

1

( ),         ,
( ),         ,

( )  

( ),         .N N

y t t t t
y t t t t

y t

y t t t T−

≤ <
 ≤ <= 

 ≤ ≤



		                                                                                                        (35)

By this way, we successfully gain the solution of the initial value problem for a large interval T . It 
should be noted that if   0J =  the MOHAM expresses the OHAM. One of the benefits of MOHAM is that 
it provides a simple way to control convergence and regulate convergence region and adjust the conver-
gence region though the auxiliary function ( )iH p involving several convergent control parameters ,

,i jc s. 
In general, this method eliminates the difficulty of finding approximate solutions in large ranges.

Convergence Theorem
If the series (23) converges to ( )u ξ , where ( ) ( )nu L Rξ +∈  is produced by Eqs. (16)-(19), and the satis-

fies the thn  order deformation equation (20), then ( )u ξ  is the exact solution of (11) [18].

Proof:

Since the series 1 2
1

( , , ,..., )n n
n

u c c cξ
∞

=
∑  is convergent, it can be written as follows

1 2
1

( )  ( , , ,..., )n n
n

S u c c cξ ξ
∞

=

= ∑ . 		       						                            (36)

so, we have 

1 2lim ( , , ,..., )  0.n nn
u c c cξ

→∞
=  		                                                                                                        (37) 

The left hand-side of (20) satisfies 

11 1 1
2 2

( , ) ( , ) ( , )  ( , ).
n n

j j nj j n
j j

u c u c u c u cξ ξ ξ ξ−−
= =

+ − =∑ ∑
  

			                                                    (38)

According to (38) and the limit, we have
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11 1 1
2 2

( , ) ( , ) ( , )  lim ( , )  0.j j nj j nnj j
u c u c u c u cξ ξ ξ ξ

∞ ∞

−− →∞
= =

+ − = =∑ ∑
  

 			                                      (39)

Applying the linear operator

11 1 1
2 2

( ( , )) ( ( , )) ( ( , ))  0.j jj j
j j

L u c L u c L u cξ ξ ξ
∞ ∞

−−
= =

+ − =∑ ∑
 

 			                                                    (40)

Eq.(40) can be written as following

11 1 1
2

( ( , )) ( ( ( , )) ( ( , )))  j jj j
j

L u c L u c L u cξ ξ ξ
∞

−−
=

+ − =∑
 

1

11 0 0 0 0
2 1

( ) ( ) ( ( ) [ ( ) ( )])  
j

jj k j k j k
j k

c N u f c N u c L u N uξ
−∞

−− −
= =

+ + + + =∑ ∑


1

11 0 0 0 0
2 2 1

( ) ( ) ( ) ( [ ( ) ( )])  
j

jj k j k j k
j j k

c N u f c N u c L u N uξ
−∞ ∞

−− −
= = =

+ + + + =∑ ∑∑
1 1

10 0
2 1 2 1

[ ( )] ( ( ) [ ( )]) ( )  0.
j j

jk j k j k j k
j k j k

c L u c N u c N u f ξ
− −∞ ∞

−− −
= = = =

+ + + =∑∑ ∑∑ 				              (41) 

So by choosing the optimal ,    1, 2,3,...kc k = , Eq.(41) is converted to the following 

( ( )) ( ( )) ( )  0.L u N u fξ ξ ξ+ + = 		       							                  (42)

Which is the exact solution of the problem.

Solution of the Fractional KFG Equation
We consider one of the nonlinear cases of FKFG equation, for 

3 3  ,   ,
4 2

a b= − =  and   2,n =  there-
fore Eq. (1) becomes

33 3( , )  ( , ) ( , ) ( , ),       1 2.
4 2t xxD u x t u x t u x t u x tα α= − + < ≤  		                                                               (43)

With the initial condition 
1( ,0)  sech( )  ( ,0)  sech( ) tanh( ).
2tu x x and u x x x= =  			                                                     (44)

and the exact solution

( , )  sech( 0.5 ).u x t x t= − +  

Now, we solve Eq. (43) by OHAM and MOHAM.

Solution of FKFG equation by OHAM
Having the linear operator   tL Dα=  and nonlinear operator

33 3  ( , ) ( , ) ( , )
4 2xxN u x t u x t u x t= − + −

and using Eq. (16), we have

0
1( , )  sech( ) tanh( ) sech( ),
2

u x t x x t x= +  	                                                                                                        (45)

The following problems are resulted from Eqs. (19) - (20)

The First-order problem:
3

1 1 0 0 0
3 3( ( , ))  [ ( ( , )) ( , ) ( , )],
4 2t xxD u x t c D u x t u x t u x tα = − + − 				                                         (46)

The Second-order problem:

2 1 1 1 1 1
3( ( , )) ( ( , ))  [ ( , ) ( , ) ( , )
4t t t xxD u x t D u x t c D u x t D u x t u x tα α α− = − + −
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2 3
0 1 2 0 0 0

3 3 3(3 ( , ) ( , ))] [ ( , ) ( , ) ( , )],
2 4 2xxu x t u x t c D u x t u x t u x t+ − + −  			                                        (47)

The Third-order problem:
2

3 2 1 2 2 2 0 2
3 3( , ) ( , )  [ ( , ) ( , ) ( , ) (3 ( , ) ( , )
4 2t t t xxD u x t D u x t c D u x t D u x t u x t u x t u x tα α α− = − + − +

2 2
1 0 2 1 1 1 0 1

3 33 ( , ) ( , ))] [ ( , ) ( , ) ( , ) (3 ( , ) ( , ))]
4 2t xxu x t u x t c D u x t D u x t u x t u x t u x tα+ − + − +

3
3 0 0 0

3 3[ ( , ) ( , ) ( , )],
4 2xxc D u x t u x t u x t− + − 			                                                                               (48)

By solving the Eqs. (46) - (48), analytic approximate solutions will be obtained.

In this research, a four terms approximation for ( , )u x t is considered. By substituting the solutions of 
the zero-order, first-order, second-order and third-order into Eq. (43) and using the least squares tech-
nique, the parameters 1 2 3,   c c and c  are determined for different values of α , as in Table 1.

Solution of FKFG equation by MOHAM
In this section, we utilize MOHAM to Eq. (43). We will consider the auxiliary function ( , )H p t as the 

following 
2

1, 2, 3,( , )  ( ) .j j jH p t c c t c t p= + + 		   						                             (49)

This approach leads to the following sequence of equations
0

0:  ( ( , ))  ,t j jp D u x tα α= 		                     							               (50)

1 3
1 1 0 0 0

3 3:  ( ( , ))  [ ( , ) ( , ) ( , )],
4 2t j j xx j j jp D u x t c D u x t u x t u x tα = − + − 		   			            (51)

2
2 1 1 1 1 1

3:  ( ( , ))  ( ( , ))  [ ( , ) ( , ) ( , ) ,
4t j t j j t j xx j jp D u x t D u x t c D u x t D u x t u x tα α α= − = − + −

2 3
0 1 2 0 0 0

3 3 3(3 ( , ) ( , ))] [ ( , ) ( , ) ( , )].
2 4 2j j j xx j j ju x t u x t c D u x t u x t u x t+ − + −  				             (52) 

3
3 2 1 2 2 2

3:  ( , ) ( , )  [ ( , ) ( , ) ( , )
4t j t j j t j xx j jp D u x t D u x t c D u x t D u x t u x tα α α− = − + −  

2 2
0 2 1 0 2 1 1 1

3 3(3 ( , ) ( , ) 3 ( , ) ( , ))] [ ( , ) ( , ) ( , )
2 4j j j j j t j xx j ju x t u x t u x t u x t c D u x t D u x t u x tα+ + − + −  

2 3
0 1 3 0 0 0

3 3 3(3 ( , ) ( , ))] [ ( , ) ( , ) ( , )],
2 4 2j j j xx j j ju x t u x t c D u x t u x t u x t+ − + −  				              (53)

As in OHAM, we obtain two approximate solutions to Equation (43)

0 1( , )  ( , ) ( , ).j j ju x t u x t u x t= +  		      							                (54)

Table 1: The value of control parameters ic , for different values of α .

 α   1c   2c   3c

   = 2α  -0.8019823766  -0.2186450716e-1  -0.8946505819e-3

   = 1.8α  -0.7147228411  -0.4578767001e-1  0.2907625806e-2

   = 1.6α  -0.6162427230  -0.8196620285e-1  0.6394454917e-2
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By applying the least squares technique, the parameters 1 2 3,   j j jc c and c  are determined for different 
values of α where   0.2h = , and 0   0t =  up to 2     1t T= =  as in Table 2.

Approximate solution for   2α =  is as the following form

( )

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )
( ) ( )

3 3 70.5000000000 sech tanh sech 0.007922060576 sech tanh

3 3 3 2 60.003558142171sech tanh 0.06654530884 sech tanh ...,                   0 0.2

2
               0.008882058897 sinh cosh 01

6cosh

,   

x x t x x x t

x x x x t x

x x

x

u x t

− − +

+ + ≤ <

− +

=

( )( )
( ) ( ) ( ) ( ) ( )( )

( )
( )

7.008882058897 sinh
                    0.2 0.4                           

3 2 60.07461cosh 0.0048sinh cosh 0.0746 cosh 0.004833sinh ...

                      0.00546237854 sinh cos1
6cosh

x t
x

x x x x x t

x

x

+
≤ <

+ − − +

 
 
 
 
 

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )

2 7h 0.00546237854 sinh
  0.4 0.6                          

3 2 60.045884 cosh 0.12506588sinh cosh 0.045884 cosh 0.0125sinh ...

2                      0.002476348954 sinh cosh 0.001
6cosh

x x t
x

x x x x x t

x x

x

− +
≤ <

− − + + +

−

 
 
  
 

( )( )
( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )

72476348954 sinh
               0.6 0.8                           

3 2 60.02080 cosh 0.006727 sinh cosh 0.0208 cosh 0.006727 sinh ...

2                      0.001751944671sinh cosh1
6cosh

x t
x

x x x x x t

x x

x

+
≤ <

− − + + +

−

 
 
  
 

( )( )
( ) ( ) ( ) ( ) ( )( )

70.001751944671sinh
      0.8 1                                   

3 2 60.014716 cosh 0.006178sinh cosh 0.0147 cosh 0.006178sinh ...

x t
x

x x x x x t

+
≤ ≤

− − + + +


















  
  
     

From Figure 1, Figure 2, Figure 3 and Figure 4 one can see that the solutions obtained by OHAM and 
MOHAM are nearly identical with the exact solution Table 3.

Conclusion
In this study OHAM and MOHAM are used to derive an analytic approximate solution for the time-frac-

tional Klein-Fock-Gordon (FKFG) equation. The results obtained from these methods show that MOHAM 
converges better than OHAM. One observes that the results agree very well with the exact solution. The 
MOHAM by dividing the interval [ ,  ]o T  can obtain better solution than OHAM. As far as the authors are 
aware, MOHAM has not been used to solve fractional partial differential equations, so far, the method has 
been tested on fractional-PDE and yields to satisfactory results. The Figures and Tables expose that good 
results are obtained by MOHAM and more accurate solution as compared to OHAM. The convergence of 

Table 2: Values of control parameters ijc .

 α   j   1 jc   2 jc   3 jc

   = 2α
 
 
 
 

   = 1j -0.9535453963 -0. 5693027473 1.774541569

   = 2j -0.9502905630 -0. 7732957869 1. 989581193

   = 3j -1.064769947 2.001054068 -1.223572794

   = 4j -0.8465034062 1.076331610 -0.5547021656

   = 5j -0.9275310255 0.9884941632 -0.3924356062

Table 3: The results of OHAM, MOHAM and Exact solution for different value of x at  = 0.6t  .

  x    = 0x    = 0.2x    = 0.4x    = 0.6x    = 0.8x    = 1x
EXACT -0.9987513008 -0.9695436291 -0.9066428345 -0.8204836683 -0.7227883424 -0.6235213061
MOHAM -0.9987510443 -0.9695434526 -0.9066424857 -0.8204829321 -0.7227889879 -0.6235206442
OHAM -0.9987361399 -0.9695304624 -0.9066344592 -0.8204805843 -0.7227893516 -0.6235247335
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Figure 1: The results of OHAM, MOHAM and Exact solution for   2α = , at 0.6t = .

Figure 2:  The Absolut Error of OHAM and MOHAM for   2α = , at 0.6t = .
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