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Abstract
We present a theoretical study of the electronic properties of GaN, InN and their ternary alloys 
InxGa1-xN in the wurtzite structure. Our results are obtained by means of two computational 
methods: The empirical pseudopotential method within the virtual crystal approximation and 
first-principles calculation based on density functional theory within the Heys, Scuseria and Ern-
zerhof hybrid functional for exchange-correlation energy. Our findings are compared with data 
available in the literature.

The alloy composition dependence of the energy band-gap at high-symmetry Г point in the 
Brillouin zone and the longitudinal and transversal electron effective masses is examined and 
discussed. Comparison between the results obtained from the two used methods is made. The 
present investigation may be useful information for technological applications in the blue and 
green regions of the spectrum.
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violet, blue, and green light emitting devices and 
for high temperature transistors.

By alloying with the group III nitrides are of 
particular importance. This is due to the large 
difference between the energy band-gaps of III-
nitrides parent compounds which makes them 
possible for the design of optoelectronic devices 
covering thus a wide spectral range [3,6,9-11]. 
The ternary alloys Ga1-xInxN (0 ˂ x ˂ 1) are those 
semiconductors formed from GaN and InN binary 

Introduction
III-nitride semiconductor materials- (Al, Ga, 

In) N- have attracted much attention during the 
last decades [1-8]. This is mainly due to their 
superior properties with respect to conventional 
III-V semiconductors. The first motivation of these 
materials comes from their energy band gaps which 
can range from 0.7 to 6.2 eV and their strong bond 
strength. Thus, these materials can be used for 
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compounds. They are very promising materials for field emission device applications. They exhibit very 
important physical properties and cover a large domain of applications where they operate in the violet 
to orange regions of visible light [2,3,10]. GaN and InN binary compounds crystallize preferentially in the 
hexagonal wurtzite structure [11] and devices have so far been based on this semiconductor material.

In order to provide some information on the electronic properties of GaN and InN and their ternary alloys 
InxGa1-xN, which might be useful for the design and application of devices based on these semiconducting 
materials, the electronic properties of the materials of interest in the wurtzite structure have been 
investigated. The aim of this contribution is the study of the alloy composition dependence of the energy 
band gaps and electron effective masses in InxGa1-xN in the wurtzite structure. For that, two methods 
have been used, namely the empirical pseudopotential method (EPM) within a modified virtual crystal 
approximation (VCA) that takes into account of the compositional disorder effect and density functional 
theory (DFT) within the Heys, Scuseria and Ernzerhof (HSE) hybrid functional for exchange-correlation 
energy.

The organization of the present contribution is as follows. After a brief introduction in Section 1, the 
computational methods used in the present calculations namely the EPM within the VCA and the DFT within 
HSE are described in Section 2. In Section 3, we present and discuss the results of our study regarding the 
electronic properties of the materials of interest. We compare our findings with the available experimental 
data as well as with previous theoretical calculations. The summary and conclusions are given in Section 4.

Methods of Calculation
EPM within VCA

The present calculations are first performed using the EPM within a modified VCA that takes into 
account the effect of compositional disorder as described in more details in Refs. [12-14]. In the EPM, 
the crystal potential is represented by a linear superposition of atomic potentials, which are modified to 
obtain good fits to the experimental direct and indirect band gaps. Further details are presented by Cohen 
and Chelikowsky [15] and in the reviews by Heine and Cohen [16,17].

The pseudopotential form factors for wurtzite GaN and InN are obtained following the same approach 
as that used in Ref. [18]. Our results are depicted in Table 1. The wurtzite lattice constants of the alloy 
InxGa1-xN are determined using Vegard's law,

Table 1: The symmetric and antisymmetric form factors of wurtzite GaN and InN structures in (Ry).

GaN [12] InN
G G2 Vs VA Vs VA

001 0.75 0.0 -0.44 -0.44 0.0
100 2.666 -0.599 -0.125 -0.125 0.20
002 3 -0.292 -0.2 -0.2 0.115
101 3.416 -0.181 -0.18 -0.18 0.2785
102 5.666 -0.1499 -0.026 -0.026 0.0
003 6.75 0.05 0.016 0.016 0.1
210 8 0.029 0.042 0.042 0.2
211 8.75 0.3 0.041 0.041 0.01
103 9.4166 0.0587 0.05 0.05 0.0
200 10.666 0.031 0.054 0.054 0.0
212 11 0.066 0.055 0.055 0.2
201 11.416 0.05 0.053 0.053 0.0216
004 12 0.1 0.045 0.045 0.004
202 13.666 0.6 0.0 0.0 0.5
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( ) ( ) 1  1 GaN nNa x x a xa= - + 		      							               (1a)

( ) ( ) 1  1 GaN nNc x x c xc= - + 		      							               (1b)

Where GaNa , GaNc  and 1nNa , 1nNc  are the lattice constants of the pure semiconductors GaN and InN 
respectively which are taken as the experimental values reported in the literature [19,20].

The hybrid DFT-HSE approach
We have performed DFT based calculations using the projector augmented wave (PAW) to describe 

the frozen core electrons and their interaction with valence electrons as implemented in the quantum 
espresso package [21].

The cutoff energy for all calculated systems is kept constant at 80 Ry for a plane wave basis set expansion. 
The valence states considered during the calculations are Ga (4s, 4p), In (5s, 5p) and N (2s, 2p). The 
simulation procedure has been iterated self-consistency with a grid of 4 × 4 × 2 k-points in the reciprocal 
space. We have employed the Monkhorst and Pack scheme [22] to generate G-centered K point sets. 
The mixing of a certain amount of non-local Hartree-Fock (HF) exchange interaction in the PBE scheme 
as described in Ref. [23], the so-called hybrid functional, has proven to improve the description of the 
electronic structure (including energy band gap). However, there are practical computational difficulties 
in this approach arising from the evaluation of the slowly decaying HF exchange HF

xE  with distance. To 
solve this problem Heyd, et al. [24] proposed a more tractable hybrid functional scheme for supercell 
calculation as follows in Eq. (2):

( ), ,  (1 ) ( ) ( )HSE HF SR PBE PBE LR PBE
xc x x x cE E E E Ea m a m m= + - + + 					               (2)

Where α represents the percentage of HF exchange included and µ is the controlling parameter for the 
range separation of the exchange interaction into short-range (SR) and long-range (LR) components, Ec is 
the correlation energy which remains unchanged relative to PBE functional and α = 1/4 is the HF mixing 
constant (determined analytically via perturbation theory). If µ = 0, HSE is equal to PBE and if µ→∞, HSE 
tends toward the pure PBE functional. The HSE form can be viewed as an adiabatic connection functional 
only for the short-range portion of exchange, whereas long-range exchange and correlation are treated 
at the PBE generalized-gradient approximation (GGA) level. The HSE functional has performed well in a 
number of previous studies. First, the effect of the screening parameter µ has been examined for a large 
number of enthalpies of formation. We have found that the values of α and µ are 0.25 and 0.20 Å-1. In 
the present calculations, we have used 16 atoms supercell to calculate the band structure parameters of 
InxGa1-xN alloys.

The results of lattice constants (a, c in Å and c/a), obtained by the HSE functional method in comparison 
to experimental and theoretical data, are listed in Table 2. We compare the lattice constants from various 
calculations for both GaN and InN.

Results and Discussion
Band structures of wurtzite GaN and InN

The calculated band structures of wurtzite GaN and InN semiconductor compounds using the EPM 
within the VCA and DFT (HSE) methods are shown in Figure 1a, Figure 1b and Figure 1c and Figure 1d 

Table 2: The lattice constants (a, c in Å and c/a) of wurtzite GaN and InN structure obtained with the HSE functional 
method in comparison to experimental and theoretical results from the literature.

a (Å) c (Å) c/a
HSE Th. Exp. HSE Th. Exp. HSE Th. Exp.

GaN 3.12 3.16 [25] 3.19 [19] 5.06 5.142;5.15 [25,26] 5.189 [19] 1.62 1.63;1.62 [25,26] 1.62 [19]
InN 3.47 3.50 [26] 3.54 [20] 5.54 5.67 [26] 5.71 [20] 1.6 1.61 [26] 1.61 [20]
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the conduction bands. From the quantitative point 
of view, the difference between the presented 
electronic band structures lies in their calculated 
fundamental energy band gap. In this respect and 
in order to compare between the energy band gaps 
as obtained from the EPM and HSE and those of 
experiment and previous theoretical works, we 
report the direct band gaps at high symmetry Γ 
point in Table 3. Note that both binary compounds, 
GaN and InN exhibit a direct band gap (Г-Г). For 
GaN, our results yielded a fundamental energy 
band-gap of 3.44 and 3.39 eV using EPM and HSE 
approaches, respectively. These values agree well 
with the experimental ones of 3.44 eV reported 
in Ref. [29] and 3.50 eV reported in Ref. [30]. As 
regards InN, the fundamental energy band gap 
obtained by our calculations is 0.77 eV when using 

respectively. Note that the overall features of these 
bands look like to be qualitatively similar. The 
valence band energies are bonding combinations 
of hybridized atomic sp3 orbitals. These bands 
appear to be less dispersive than the conduction 
bands. This is because they are more localized than 

Table 3: Comparison of eigen energies at Γ point of GaN 
and InN with experimental and theoretical results (in 
eV).

Eg (eV)
HSE EPM Th. Exp.

GaN 3.39 3.44 3.00; 3.5 
[27,28]

3.44; 3.50 
[29,30]

InN 0.9 0.77 0.17, 0.69 
[20,25]

0.9 [31], 
0.65-0.8 [26]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a and b) Band structure of wurtzite GaN (a) using EPM within VCA method; (b) using DFT (HSE) 
method along the high symmetry lines of the first Brillouin zone; (c and d) Band structure of wurtzite InN (c) 
using EPM within VCA method; (d) using DFT (HSE) method along the high symmetry lines of the first Brillouin 
zone.
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linear muffin-tin orbital [44] (FP-LMTO) and atomic 
sphere approximation (ASA) approaches led to 
values between 0.2 and 0.43 eV.

Band gap of ternary alloys and bowing param-
eters

For a ternary alloy AxB1-xN, the fundamental gap 
is given as:

( )( )  (1 ) ( ) (1 )g g gE x x E AN x E BN b x x= + - - - 	
						             (3)

Where b is the band-gap bowing parameter.

Using HSE method and the EPM within the 
VCA (p = 0), we have calculated the band gap 
energies gEG  of wurtzite InxGa1-xN as a function of 
In concentration x in the range 0-1. The agreement 
with the experimental band gap   2.966gEG =  eV 
for indium molar fraction x = 0.1 [45] is reached for 
the value of p = -0.458 (p is the disorder parameter 
that includes the effect of compositional disorder). 
The curves that fit best the calculated HSE and EPM 
under VCA data are plotted in Figure 2. Different 

EPM and 0.9 eV when using the HSE approach. 
The former value lies in the experimental range 
of 0.65-0.8 eV reported in Ref. [26] and the latter 
is in excellent accord with that of 0.9 eV reported 
by Davydov, et al. [31]. Thus, both approaches 
give good results as compared to experiment. It 
should be worth mentioning that InN band gap 
was reported to be about 1.8-2.0 eV [32,33]. Early 
EPM calculations [34] basically reproduced the gap 
of 2.0 eV as reported by the early experiments. 
Nevertheless, later, measurements of the band 
gap of InN films, grown by molecular-beam epitaxy 
(MBE), reported values in the 0.7-1.0 eV range [35].

The high quality of the samples in these 
experiments was partly utilized to explain the large 
difference between the early and latter [36-39] 
experiments. The significant effect of the electron 
concentration on the band gap [40-42] could 
explain the 0.75-0.8 eV band gap. The full potential 
linearized augmented plane-wave [43,44] (FLAPW) 
calculations mostly reported negative values of the 
band gap, from -0.4 to -0.19 eV. The full potential 

Figure 2: Energy gap as a function of x for wurtzite InxGa1-xN at Г point calculated without disorder (standard 
VCA), with including the compositional disorder (improved-VCA) and with HSE.
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of band energies with interatomic distances can 
be non-linear even if the lattice constant changes 
linearly in accordance with Vegard’s law. In Eqs. 
(4a) and (4c), one can see that the bowing factor 
for ( )gE xG  is negative in sign when using the VCA 
and HSE functional methods, in disagreement with 
the experimental values ranging from b ≈ 1 eV [46-
48] to b ≈ 2.6-4.11 eV [48-53]. However, one should 
be careful in these experiments, the InN band gap 
was reported to be around 2 eV which is much 
larger than the one we calculated. On the other 
hand, our findings suggest that the ternary InxGa1-

xN of interest is a direct band-gap semiconductor 
over all the composition range 0 < x < 1. This result 
agrees with that reported in Ref. [54]. Our results 
as regards the direct band-gap bowing parameters 
of the material system of interest are depicted in 
Table 4. The deviation parameters of the lattice 
constants and the inaccurate determination of the 
composition x which often disregards the strain 
influence [57] may cause the discrepancy between 
the band gap bowing parameters obtained from 
the linear and nonlinear situations.

Electron effective mass
The transport properties in semiconductors 

require the study of the electron effective mass *
em  

[58,59]. The electron mass tensor is represented by 
a transverse mass m⊥ (with k lying in the kx-ky plane) 
and a longitudinal mass m∥ (with k parallel to kz). By 
adopting a parabolic relation of E versus the wave 
vector k, we can obtain *

em  at the conduction band 
minima (at the Г point) as described in Ref. [59].

The calculated effective masses of electrons for 
GaN and InN in the wurtzite structure are listed in 
Table 5. Our calculated electron effective masses 
for wurtzite GaN (m⊥ and m∥) agree reasonably 
well with the experimental one of 0.22 quoted in 
Ref. [56]. However, they are larger than the ones 
obtained by using a self-consistent full-potential 

behaviors are clearly observed. In fact, within the 
improved VCA, when x goes from 0 to 0.8, we 
note an habitual decrease of band gap energy 
versus indium concentration. Beyond x = 0.8, the 
curve shows a nonlinear variation. The best fit of 
our energy band gap data yielded the following 
equations,

2  3.458 0.322 2.388gE x xG = - - (VCA)	    (4-a)

2 3  3.369 2.91 3.694 3.951gE x x xG = - - +  
improved VCA)	  			      (4-b)

2  3.339 0.237 2.194gE x xG = - - 	(HSE)	    (4-c)

Taking into account of the disorder effect, 
we note that the bowing parameter b depends 
strongly on the alloy composition x according to 
the following expression,

( )   0.257 3.951b x x= + 			      (4-d)

On the other hand, one can note that the 
band gap bowing parameter obtained from the 
EPM within the VCA is not far from that obtained 
from the HSE approach. The best fit of the data 
determined from both approaches show a 
quadratic behavior. The dependence of the bowing 
parameter on x can be explained by the fact that 
at high values of x, the compositional disorder has 
little effect on InN. Moreover, due to the large 
difference in electronegativity and atomic radius 
between indium and nitrogen, the dependence 

Table 4: Fundamental gap bowing parameter b (in eV) 
of ternary alloys of interest in the wurtzite structure.

InxGa1-xN
This work without disorder -2.388

with disorder 0.257x + 3.951
HSE -2.19

Other Cal. 1.7 [25], 1.115 [54]
Expt. 1 [55], 2.6-4.4 [56]

Table 5: Effective electron masses of the conduction band minimum in wurtzite GaN and InN compared with 
experimental and theoretical results.

Material m⊥(m0) m∥(m0)
This work Exp. Other Cal. This work Exp. Other Cal.

EPM HSE EPM HSE
GaN 0.232 0.307 0.22 [57], 0.222 

[60], 0.20 [38,61]
0.21 [20], 0.18 [62], 
0.23 [38]

0.203 0.296 0.22 [57], 
0.20 [38,61]

0.19 [20], 0.20 
[62]

InN 0.137 0.19 0.085 [63] 0.10 [64], 0.081 [38] 0.139 0.20 0.085 [63] 0.14 [64], 
0.082 [38]
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are closer to the experimental data than those of 
Ref. [27]. The electron effective masses for InN 
calculated from Γ to M and from Γ to A directions, 
respectively are m⊥ = 0.137 and m∥ = 0.139, roughly 

linearized augmented plane-wave method within 
the local-density-functional approximation, m⊥ = 
0.18 and m∥ = 0.20 [30]. Our calculated values are 
better than those reported in Ref. [27] since they 
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Figure 3: The transversal (a) and longitudinal (b) electron effective masses of Γ valleys in wurtzite InxGa1-xN 
as a function of indium composition x. The solid and dashed lines correspond to calculations without and 
with disorder, respectively.
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and theoretical results in literature prevents the 
validation of our calculated bowing values which 
they were presented in Table 6 and are predictions 
that may serve for future studies.

Conclusion
In summary, we have investigated structural 

and electronic properties of wurtzite InxGa1-xN 
using the EPM under the VCA and a modified VCA 
and DFT within HSE hybrid functional for exchange-
correlation energy. Lattice constants, band gap 
energies and electron effective masses at the Г 
point have been calculated and compared with 
previously available data. Our results showed that 
the bowing parameter b of the energy gap depends 
strongly on the indium composition x. It is also 
found that b has a negative sign when using VCA 
and HSE functional methods. The electron effective 
masses m⊥ and m∥ at the Γ point for wurtzite 
structure have been calculated for the ternary alloy 
InxGa1-xN using EPM without taking into account the 
disorder effect. Our results show that the bowing 
parameter b of the effective mass depends strongly 
on the indium composition. Generally, a good 
accord was obtained between our results and data 
quoted in the literature for InN and GaN materials. 
Therefore, more experimental measurements and 
first-principles calculations are needed in order 
to obtain more accurate and reliable results for 
wurtzite InxGa1-xN.
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