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Abstract
For a 2-ton heavy-duty automated guided vehicle (AGV), structure optimization and load-
carrying analysis are investigated in order to improve the dynamics response performance and 
the energy utilization efficiency of the AGV frame. The mechanical and geometric constraints 
are firstly defined for the structure optimization of the AGV frame. Secondly, a multi-objective 
optimization function is formulated for the structure size, and then the optimal solution is 
solved by means of the genetic algorithm. Thirdly, the design scheme of the AGV frame is 
refined according to the optimized structure-size parameters. Moreover, the ANSYS software is 
used to verify the stiffness and strength of the frame. The results show that the mass and the 
moment of inertia of the frame is reduced by 33.7% and 19.3% respectively, and the frictional 
forces of AGV wheels decrease by 16.8%. A light-weight mechanical base is provided for motion 
control of the heavy-duty AGV.
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Introduction
Automated Guided Vehicle (AGV) is a mobile 

robot that can travel automatically along a 
predetermined path. Nowadays a large number 
of AGVs are needed to carry out repeating 
transport tasks in manufacturing and warehouse 
industries [1]. Many motion control methods have 
been developed based on kinematics model or 
dynamic model for AGVs [2-5]. In fact, the dynamic 
performance of an AGV is greatly influenced by 

the structure of its body frame. The mass and 
the moment of inertia of the frame determine 
the inertial matrix of the AGV dynamics model, 
which fundamentally limits the dynamic response 
performance of an AGV. On the other hand, the 
energy utilization efficiency is also related to the 
frame structure, especially to the friction resistance 
of a body frame, for a heavy-duty AGV. Improving 
the energy utilization efficiency of AGV is helpful for 
reducing the capacity and quality of the onboard 
battery pack, which further reduces the mass and 
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the moment of inertia of an entire AGV in return. 
Hence, structural optimization of an AGV frame is 
regarded as the basic work to improve the control 
performance of a heavy-duty AGV.

Structural optimization contains three different 
types of problems, i.e., size, shape and topology 
optimization [6]. Among them, topology optimi-
zation aims at finding the optimal way of material 
distribution in the structure by means of objective 
functions under constraint conditions, which is of-
ten used for the initial design area on the stage of 
conceptual design [7-9]. After the structure topol-
ogy and shape are determined, size optimization is 
used to work out the optimum design size of struc-
tural components and the best usage of material 
properties [10-14]. Genetic algorithm is used to op-
timize the plate thickness, section size and spacing 
parameters by Sekulski [10], in order to reduce the 
hull weight of the high-speed catamaran. The area 
of circular hole of hub steel ring is also optimized by 
means of genetic algorithm [11]. The mechanism 
parameter design of an amphibious transformable 
robot is formulated as a multi-objective optimiza-
tion problem, based on the mapping relationships 
between the performance indexes and the mech-
anism parameters. The non-dominated sorting ge-
netic algorithm II (NSGA-II) is then adopted to solve 
this optimization problem and to get the Pareto op-
timization [13].

After the structural optimization problems are 
formulated, how to search the optimum solutions 
then needs to be taken into account. Nature-in-

spired meta-heuristic algorithms can be used to 
solve these problems by mimicking biological or 
physical phenomena [15]. They can be grouped 
into three main categories: Evolution-based, phys-
ics-based, and swarm-based methods. The most 
popular evolution-inspired technique is Genetic 
Algorithms [8,10,12-14]. Physics-based methods 
imitate the physical rules in the universe. The most 
popular algorithms are Simulated Annealing [16]. 
The third group of nature-inspired methods in-
cludes swarm-based techniques that mimic the so-
cial behavior of groups of animals, such as mimick-
ing the hunting behavior of humpback whales [15], 
or inspired by the leadership and social behavior of 
grey wolves [17,18].

The size optimization of an AGV body frame 
pertains to a kind of nonlinear optimization 
problem under constraints. The optimization model 
contains the objectives or constraint parameters 
that have a nonlinear relation with design variables 
[9]. A direct search method is adopted in this paper, 
instead of handling the constraint conditions of 
the optimization problem in advance [19]. Genetic 
algorithm is employed to make a quick search 
for the optimum solution of the multi-objective 
optimization problems.

The rest of this paper is organized as follows. 
The optimization objective of a heavy-duty AGV 
is described in Section 2. In Section 3, the multi-
objective optimization model under constraints is 
formulated for the size design of the AGV frame. 
A genetic algorithm is used to search the optimum 
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Figure 1: The planar dimensions of the body frame of the heavy-duty AGV.
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Where I1 and I2 are the moment of inertia of the 
bearing plate of driving wheels and caster wheels 
with respect to (w. r. t.) their centers, respectively.

The friction resistance of an AGV in motion is re-
lated to the payload carried by the driving wheels 
and caster wheels, while the distribution of the pay-
load between the driving wheels and caster wheels 
is affected by the structure of the AGV frame. Size 
optimization can be used to reduce the friction re-
sistance of the heavy-duty AGV significantly, and to 
improve the energy utilization efficiency of the AGV 
consequently.

Optimization Modeling
General mathematical model

The general mathematical model of optimization 
problems can be expressed as [20]:

1 2x  [ ,  ,  ]
min  (x)
. . (x)  0;    1, 2,  
(x)  0;    1, 2,  

T
n

i

j

x x x
f

s t g i m
h j p

 = Λ
 
 
 ≤ = Λ 
 = = Λ 

         (2)

Where x is the design variable vector, and n is 
the number of design variables in x. min  (x)f  is 
the objective function for optimization design, and 

(x)ig  and (x)jh  are the constraint conditions of 
the system.

Constraint conditions
Constraints include mechanical and geometric 

constraints. When the heavy-duty AGV carries its 
payload, the main mechanical effect caused by the 
payload is bending deformation. Thus, the normal 
bending stress is considered as the major strength 
constraint when the load-carrying structure of the 
AGV frame is designed.

max
max     [ ]M

W
σ σ= <            (3)

Where maxσ  and Mmax are the maximum bend-
ing stress and the maximum moment of the bear-
ing beam, respectively. W is the bending resistance 
of the cross-section of the bearing beam, and [ ]σ  
is the allowable design stress. According to Eq.(3), 
one can effectively enhance the load-carrying ca-
pacity of the structure by increasing the bending 
resistance of the cross-section W, or by reducing 
the maximum bending moment Mmax , i.e., design-
ing a reasonable shape and size of cross sections or 
a reasonable load distribution of bearing beams. In 

size parameters in Section 4. In Section 5, the 
stiffness and strength of the AGV frame, which has 
been refined according to the optimization results, 
are analyzed by means of the ANSYS software. 
Finally, conclusions are drawn in Section 6.

Problem Descriptions
The optimization results of the AGV frame can 

be evaluated in the perspective of the dynamic 
response characteristics and the energy utilization 
efficiency. Since driving wheels and caster wheels 
are chosen from commercial off-the-shelf products, 
their dimensions have already been known before 
the optimization of the AGV frame. For example, 
the bearing plates for driving wheels have the 
dimensions of 200 mm × 200 mm × 20 mm in length, 
width and thickness, while the three dimensions of 
that for casters are 200 mm × 240 mm × 20 mm.

The dimensions of the AGV frame needed to be 
optimized are shown in Figure 1. The length and the 
width of the body frame are l and l1. BB1 denotes the 
axis of two driving wheels. The distance between 
BB1 and AA1 is c. The distance between the bearing 
plate of driving wheels and the middle line of the 
AGV is t1. EE1 represents the axis of two caster 
wheels, and its distance from FF1 is d. The distance 
between the bearing plate of caster wheels and 
the middle line of AGV is t2. Suppose the payload 
to be distributed on the CD segment uniformly. The 
lengths of AC, CD and DF are a, e and b respectively.

The total load of the AGV is composed of the 
payload m1, the body frame m2, driving wheels 
m3 and caster wheels m4. The payload capacity is 
usually determined by the requirements, while the 
driving wheels and caster wheels are chosen from 
the off-the-shelf products. Hence, the objective is 
only to consider the optimization of the mass of the 
body frame m2 in this paper. The moment of inertia 
of the AGV also comprises the payload J1, the body 
frame J2, driving wheels J3 and caster wheels J4, 
shown as follows:
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this paper, channel steels are used to construct the 
frame structure of the heavy-duty AGV. The safety 
factor ns is selected as 1.5, and the allowable stress 
[ ]σ  is prescribed as 156.7 MPa, according to the 
reference [11].

Generally, heavy-duty AGVs have load-carrying 
mechanisms, through which the pressures of 
payloads are imposed and distributed uniformly 
on the bearing beams. The load-bearing beam is 
supported by the driving wheels and the caster 

wheels. On the static analysis stage, the structure 
can be regarded as a simply-supported beam, the 
force analysis of which is shown in Figure 2.

After defining the coordinate system shown in 
Figure 2, we can formulate the shearing force and 
the bending moment of cross section of the bearing 
beam as

Fs = Fs (x)

Ms = Ms (x)            (4)

Y/N

0

FL q FR

X/m

d
ba

c

1

Figure 2: Load analysis of a bearing beam.
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Figure 3: The shearing force distribution of the bearing beam.
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wheels is obviously greater than that of driving 
wheels, the bearing capacity FR of caster wheels 
should be decreased and the bearing capacity FL 
of driving wheels should be increased, when Mmax 
complies with the condition Eq.(3).

Objective function
The objective of size optimization lies in reducing 

the moment of inertia of the heavy-duty AGV and 
the frictional resistance of the wheels. This problem 
can be described as a multi-objective optimization 
problem, expressed as follows:

{ }
  

min ,  Rx G
J F

∈
           (6)

Where G is the set of feasible points that satisfy 
the constraint conditions. In order to facilitate 
the problem-solving process, the multi-objective 
optimization problem is equivalently converted 
into a single-objective one by means of a weighted 
sum, as

{ }1 2  
min ( )    Rx G

f x w J w F
∈

= +          (7)

Where w1 and w2 are weight coefficients, which 
are predefined as w1 = 0.6 and w2 = 0.4 by means of 
the trail and error procedure. Because of different 
dimensions of J and FR, normalization process 
is used here to construct the objective function 
containing dimensionless variables.

1 2  
min ( )    R
x G

R

FJf x w w
J F∈

 
= + 

 
          (8)

Where Fs and Ms are the shearing force and the 
bending moment of the bearing beam.

The distribution of the shearing force and the 
bending moment are shown in Figure 3 and Figure 
4, respectively. According to Eq.(4), the support 
force FL and FR of the load-bearing beam on the 
left and right brackets, and the maximum bending 
moment Mmax of the bearing beam can be obtained.

ma
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Where q is the concentration of uniformly 
distributed load on the bearing beam.

The heavy-duty AGV designed in this paper has 
a rated load of two tons. In the simply-support 
beam model of Figure 2, the left and right brackets 
represent the driving wheels and the caster 
wheels of the heavy-duty AGV, respectively. The 
dimensional and mechanical parameters of these 
wheels are shown in Table 1. It is seen that the 
load-carrying capacities of these wheels have a 
large safe margin, compared to the rated load.

In order to improve the energy efficiency of the 
heavy-duty AGV, it is reasonable to reduce the 
sum of frictional resistances of multiple wheels 
if possible. Since the friction coefficient of caster 

M/Nm

0
X/m

2 2

2

( - - ) ( - 2 - )
8( - - )

q l a b l d a b
l c d

+

Figure 4: The bending moment distribution of the bearing beam.

Table 1: The dimensional and mechanical parameters of the wheels.
 Wheel diameter (mm) Load (kg) Friction coefficient Rated moment (Nm)
Driving wheels 250 800 0.017 290
Caster wheels 200 600 0.035 /
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Where J is defined in Eq.(1), the allowable stress 
[ ]σ  is prescribed as 156.7 MPa, and the bending 
section coefficient W is 10.4 cm3.

Optimization Solving
The genetic algorithm (GA) is utilized here to find 

the optimal size of the AGV frame according to the 
optimization model Eq.(9). This algorithm mimics 
the evolutionary process in nature. Like creatures 
in nature evolve to adapt to the environment, solu-
tions in the GA evolve to adapt to the optimization 
problem. It can be directly applied to the structure 
object without the limitation of the derivation and 
the function continuity. GA, which has the inher-
ently implicit parallelism and the better global op-
timization ability, can automatically acquire and 
guide the searching space for optimization, and can 
adaptively adjust the search direction without the 
need of explicit rules [10-13]. The flowchart of the 
genetic algorithm in this paper is shown in Figure 5. 
The parameters of the algorithm are listed in Table 
2. The detailed steps are described as follows:

Where J  and RF  are the estimated values of 
the moment of inertia and the bearing capacity, 
i.e., J  = 150 kg•m2, RF  = 4000 N.

Size optimization model of the AGV frame
The optimization model can be formulated 

under the constraint conditions of the AGV frame.

1 1 2
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2
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A multi-objective optimization 
model taking J and FR 

A single-objective model 
taking the weighted sum f

Initializing the GA population

Fitness evaluation

Selection operator

Whether to meet the 
stopping criterion

Crossover operator

Mutation operator

Output the 
optimal solution

Weighted combination 

Yes

No

Start

End

Figure 5: The flowchart of the genetic algorithm.
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Crossover operator
Given two parents, the task of crossover is 

to generate the offspring by inheriting features 
(gene structures) from the parents. For the binary 
encoding scheme, since a chromosome only 
contains binary bits, the single-point crossover is 
applicable. In the algorithm, a random integer n is 
selected from the range of the chromosome length. 
One gene fragment is selected from the first parent 
by extracting the first n genes, and the other gene 
fragment is generated by inheriting the rest genes 
from the second parent. Then the two fragments 
are combined to reproduce a new offspring. The 
crossover probability Pc is set as 0.8. Feasibility 
must be checked after crossover.

Mutation operator
The mutation operator introduces random 

changes to several genes of a chromosome. It gives 
the new information to the population and adds 
the diversity to the mating pool. The single-point 
mutation operator is used here to decide which 
genes to be changed. The mutation probability Pm 
is set as 0.1.

Stopping criterion
When the number of iterations exceeds 100 

times or the average weighted fitness is less than 
the tolerance value (10-6), the algorithm will stop 
evolving. The optimization result of the AGV frame 
is obtained, which is shown in Figure 6.

It is seen from Figure 6 that the optimal 
dimensions of AGV frame are: a = 0.25 m, b = 0.4 
m, c = 0.275 m, d = 0.1 m, e = 0.549 m, l1 = 0.72 m, 
t1 = 0.1 m, and t2 = 0.08 m. After the 20th generation, 
the best fitness value has already converged to 
the average value, and the average distance of 
individual fitness of each generation has also 
approached zero. For the group of dimensional 
parameters, the payload on the AGV frame is FR = 
3030 N, FL = 6970 N and Mmax = 1161 N•m. Since 
the channel steel #14a is used to construct the AGV 
frame, the maximum bending stress is maxσ  = 144.5 
MPa according to Eq.(3).

Initialize the population
Solutions in GAs are defined as a chromosome 

of an individual, and a group of individuals is 
referred to as a population. The initial population 
is randomly generated. The population number N 
and the evolution step G are set as 200 and 100, 
respectively. Each chromosome is divided into 8 
gene segments and encoded into a binary form. 
Each gene segment corresponds to one dimensional 
parameter, as shown in Figure 1. They join together 
sequentially to constitute one chromosome for 
this size optimization problem. The length of gene 
segment, i.e., the number of binary bits, is designed 
in the consideration of the range and accuracy of 
each parameter, as shown in Table 3. The total 
length of one chromosome is 57 bits.

Fitness evaluation
The solution quality of each individual is 

evaluated by the fitness function. The reciprocal of 
the objective function f (x) is employed as the fitness 
function here. The raw individual fitness of each 
generation of population is calculated according 
to the fitness function. Then, the rank selection 
method is used to scale the raw individual fitness 
to the range of the fitness selection function.

Selection operator
In the selection operation, several preferable in-

dividuals are selected from the current generation 
of population by means of the roulette wheel, in 
which individual chromosomes with higher fitness 
value have the higher probability of reproducing 
new offspring in the next generation. However, due 
to the randomness of the roulette wheel method, 
there is also a possibility of losing preferable indi-
viduals in the process of selection. Hence, the elitist 
reservation mechanism is adopted here by trans-
ferring directly the best 10 individuals into the next 
generation.

Table 2: The parameters of the genetic algorithm.
Population 
number N

Evolution step 
G

Elitist reservation Crossover probability 
Pc

Mutation probability 
Pm

Stopping 
tolerance

200 100 10 0.8 0.1 10-6

Table 3: The binary encoding of individual chromosome 
for each parameter.
Parameter a b c d e l1 t1 t2

Gene length (bit) 6 8 6 8 7 8 7 7
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Figure 6: Evolution process of the solution individuals.

in Figure 8. The parameter comparison of the two 
models is listed in Table 4. It is seen that the mass 
and the moment of inertia of the AGV frame are 
reduced significantly on the same condition of the 
frame strength, by means of the GA-based size 
optimization. It improves the dynamic response 

Statics Analysis
The preliminary model of the AGV frame is 

designed empirically by using the channel steel 14a, 
as shown in Figure 7. This model is then improved 
by the GA-based structure optimization, as shown 

Figure 7: The AGV frame designed empirically.

Figure 8: The AGV frame improved by size optimization.

Table 4: Parameters of the preliminary model and the improved model.
 Mass (kg) Moment of inertia (kg•m2) Friction (N)
Preliminary model 115.8 227.8 896.1
Improved model 76.8 (33.7%↓) 183.9 (19.3%↓) 746 (16.8%↓)
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result. The cloud map of the maximum deformation 
and displacement of the AGV frame is drawn in 
Figure 9. It shows that the maximum displacement 
is 0.15 mm, occurring at the vicinity of the bearing 
plates of caster wheels. The cloud map of the 
maximum equivalent stress is shown in Figure 10. 
The maximum stress of the AGV frame occurs at the 
junction of the supporting frame and the bearing 
beam, which is 12.265 MPa, less than the allowable 
stress. The stress on the area nearby the bearing 
plates of driving wheels is also relatively high. The 

performance of the heavy-duty AGV. Furthermore, 
the size optimization also decreases the friction 
resistance of the AGV when it moves, consequently 
raising the efficiency of energy utilization.

Then, the ANSYS software is used to analyze 
the static force state of the AGV frame and then to 
check its strength and stiffness. The analysis process 
includes selecting the frame material, importing 
the three-dimension model, constructing the unit 
and partitioning the grid, defining the loads and 
constraints, solving the problem and displaying the 

F: Static Structural
Total Deformation
Type: Total Deformation
Unit: mm
Time: 1
2017/12/29  16:47

0.15077 Max
0.13402
0.11727
0.10052
0.083764
0.067011
0.050258
0.033506
0.016753
0 Min

Figure 9: The cloud map of the maximum deformation and displacement.

F: Static Structural
Equivalent Stress
Type: Equivalent (von-Mises) Stress
Unit: MPa
Time: 1
2017/12/29  16:49

12.265 Max
10.902
9.5395
8.1768
6.814
5.4512
4.0884
2.7256
1.3628
4.5669e-5 Min

Figure 10: The cloud map of the maximum equivalent stress.
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simulation results of the maximum deformation, 
displacement, and equivalent stress conform to the 
foregoing theoretical analysis.

Conclusions
The mechanical and geometric constraints 

are firstly defined for the structure optimization 
of a 2-ton heavy-duty AGV. Secondly, the multi-
objective optimization function is formulated for 
the structure size, and then the optimal solution 
is solved by means of the genetic algorithm. 
Thirdly, the design scheme of the AGV frame is 
refined according to the optimized structure-size 
parameters, which improves the dynamic response 
performance and the efficiency of energy utilization 
of the heavy-duty AGV. Finally, the stiffness and 
strength of the frame are verified by means of the 
ANSYS software.
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