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Abstract
In this paper we consider the problem of the suppression of wing rock phenomenon in 
presence of actuator faults. The main aim of this work is the application of a linear adaptive 
actuator failure compensation control scheme for wing rock motion of a slender delta wing. 
First, the analytical nonlinear model that characterizes the phenomenon of wing rock is 
given, and its behavior for different angles of attack is presented. Then, an adaptive actuator 
failure compensation redundant control design is proposed, and applied for a rolling motion 
regulation in the presence of actuator faults. Finally, numerical simulations are conducted to 
show the effectiveness of the control scheme for wing rock suppression for different actuator 
failures scenarios.

Index Terms
Wing-rock motion, Actuator failures, Fault tol- 

erant control, Adaptive control

Introduction
Wing rock phenomenon is a self-induced rolling 

motion that can happen on both civilian or military 
aircrafts and can show by limit cycle oscillations in 
high speed regimes [1,2]. Many factors can cause 
these undesirable behavior even at low or high an-
gles-of-attack (AOA) such as fluid flow past an air-
craft; with many risks for the aircraft operating dy-
namics, maneuvering flexibility leading sometimes 
to loss of control [3].

The wing rock phenomenon is characterized by 
some aerodynamic parameters which are [4]:

1. Angle of Attack (AOA),

2. Angle of sweep,

3. Leading edge extensions,

4. Slender forebody.

Aircraft with highly swept wings operating with 
leading edge extensions are highly susceptible to 
suffer from this problem. Generally we remark an 
increase in amplitude up to a limit cycle, then a fi-
nal state is usually stable and defined by large roll 
oscillations [5,6].

Many research works have focused on the anal-
ysis and modelization of this phenomenon in order 
to predict the magnitude and the frequency of the 
limit-cycle limitations [7,8], and since many mathe-
matical and numerical models with different preci-
sion orders have been developed based on experi-
mental simulations on benchmarks [9,10].
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The problem of suppressing wing rock has a very 
rich state of the art. A great number of control solu-
tion have been proposed with more or less success, 
most of them are using simple second order mod-
els. Many authors have proposed fuzzy control-
lers to eliminate these oscillations. Among them, 
Liu, et al. proposed fuzzy PD controller [11] and a 
variable universe fuzzy controller [12] with a sat-
isfactory performance at different AOA. Whereas, 
Sreenatha, et al. [13,14] tried out a forty-nine rule 
based FLC with the delta wing model in the wind 
tunnel with results indicating the effectiveness and 
robustness of the FLC. Other works used adaptive 
fuzzy controllers to improve the aircraft behavior 
like Rong, et al. [15] and Liu [16].

Another solution was the neural control pro-
posed by Joshi, et al. [17] and Hsu, et al. [18] with 
a good ability to achieve favorable tracking per-
formance for the wing rock motion for an aircraft 
operating at subsonic speeds and high angles of 
attack. In [19], Tewari used an optimal feedback 
controller, derived from the Hamilton Jacobi equa-
tions, to suppress wing- rock oscillations.

At meantime, some other researchers tried non-
linear control strategies like Shue and Agarwal [20] 
who introduced a nonlinear H∞ method for the 
control of wing rock motions. In [21], Abdulwahab 
and Hongquan achieved limit cycle prevention by 
adding a certain control function to the nonlinear 
dynamics of the wing-rock model; Zribi, et al. [22] 
introduced a state transformation such that the 
transformed dynamic model is in a form which is 
suitable for a variety of control designs. A feedback 
linearization control scheme and a sliding-mode 
control (SMC) scheme are then proposed to sup-
press wing rock oscillations.

One of the more efficient control techniques is 
adaptive control [23] which is more suitable in case 
of unknown or varying model parameters. Accord-
ing to the fact that the model is identified or not 
by the control algorithm there are direct [24] and 
indirect [25] adaptive control schemes.

Singh, et al. [26] and Capello, et al. [27] and pro-
posed adaptive control strategies for the problem 
of wing rock suppression. Adaptive feedback lin-
earization is proposed to suppress the wing rock 
by Monahemi and Krstic [28]. The work of Ordonez 
and Passino [6] considers the regulation of a wing- 
rock problem via nonadaptive as well as adaptive 
controllers for the case of time-varying AOA. In the 

case of model uncertainties, Sharma and Kar [29] 
used contraction theory in the development of an 
adaptive backstepping controller for the suppres-
sion control of the wingrock phenomenon.

However, most of these works only considered 
the failure free case even if the occurrence of such 
failures on an aircraft is very critical. Some authors 
have addressed this important problem particular-
ly the actuators’ failures like the works of Tao, et 
al. [30] and Boulouma, et al. [5] who developed an 
adaptive controller tolerant to actuators’ failures.

In this paper we address the problem of wing 
rock suppression in presence of various actuator 
failures and propose a linear adaptive control de-
sign for this phenomenon model derived in [1]. And 
we show using numerical simulation that this adap-
tive controller is able to suppress the undesirable 
wing rocks rapidly and efficiently.

The reminder of this paper is organized as fol-
lows: Section II presents the wing-rock modeliza-
tion and the control problem definition. The pro-
posed robust adaptive control design is detailed in 
Section II-C. In Section III, simulations results are 
presented to illustrate the efficiency of the pro-
posed robust adaptive control method. Concluding 
remarks are given in Section IV.

Problem Statement
Wing-rock dynamical model

In this paper, we consider the model proposed 
by Nayfeh, et al. [1] which is described by the fol-
lowing differential equation,

2 3 2 2
1 1 2 2 = -  +  +  +  + b bφ ω φ µ φ φ µ φ φ φφ             (1)

With,
2

1 1 = - c aω

1 1 2 2 =  - c a cµ

1 1 3 = b c a

2 1 4 = c aµ

2 1 5 = b c a
We have 1c  = 0.354 and 2c  = 0.001.

The ai coefficients values depend on the inci-
dence angle α. Table 1 give the values of ai param-
eters for some values of α.

Let us rewrite equation (1) in the state space 
form by taking
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2 3 2 2
2 1 1 2 1 2 2 1 2 2 1 2 = -  +  +  +  + x x x b x x x b x xω µ µ     (2)

In [1] it is shown that the model is stable for the 
1 2[ ,  ] = [ ,  ]x x φ φ , we get:

1 2 = x x

Table 1: Values of ai coefficients for different incidence angle α values.

α a1 a2 a3 a4 a5

15° -0.01026 -0.02117 -0.14181 0.99735 -0.83478
21.5° -0.04207 0.01456 0.04714 -0.18583 0.24234
25° -0.05686 0.03254 0.07334 -0.3597 1.4681

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-10

-5

0

5

10

 (d
eg

)

 = 15 °

Figure 1: System free response for α = 15°
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Figure 2: System free response for α = 21.5°
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�Figure 3: System free response for α = 25°
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incidence angles α < 19.5 deg. for more important 
angles, it begins to oscillate and becomes unsta-
ble. We remark an augmentation of the oscillations 
magnitude until it reaches a limit-cycle.

Figure 1, Figure 2 and Figure 3 represent the 
open loop system response for the incidence an-
gles α = 15°, α = 21.5° and α = 25° respectively.

In the simulation work, we consider three aile-
ron segments δ as a control input and the roll angle 
φ  as the system output. Introducing the control u = 
[u1, u2, u3] we can rewrite (2) as follows,

1 2 = x x

2 3 2 2
2 1 1 2 1 2 2 1 2 2 1 2 = -  +  +  +  +  + x x x b x x x b x x uω µ µ      (3)

1 = y x
In order to design a fault tolerant control for the 

system stabilization, the actuators redundancy is 
necessary, thus, the control will be provided by the 
three aileron segments u = [u1, u2, u3]

T.

Thus (3) becomes

1 2 = x x

2 3 2 2
2 1 1 2 1 2 2 1 2 2 1 2 1 2 3 = -  +  +  +  +  +  +  + x x x b x x x b x x u u uω µ µ     (4)

Equation (4) can be rewritten in a compact form 
as,

1 2 = x x

2 1 2 =  ( , ) + x f x x u            (5)

With,
2 3 2 2

1 2 1 1 2 1 2 2 1 2 2 1 2 ( , ) = -  +  +  +  + f x x x x b x x x b x xω µ µ

Actuators failures modelization
The actuators’ defaults considered by Boulou-

ma, et al. [5] are of two types:

Type 1 - Total loss of the actuator efficiency: At 
the instant jt , the input ju  is no more influenced 
by the applied control law, which could be de-
scribed by,

( ) = ( ),    j j ju t u t t t≥           (6)

Where the constant value ( )ju t  and the occur-
rence moment jt  are unknown; this failure case is 
very frequent in the flight control systems (rudder, 
aileron, elevon rod). It is caracterized by the actua-
tor blocking in some given position.

A more general case is the model of time varying 
parametric failure [30] modelized as,

( ) =  + ( ),    j j j ju t u d t t t≥           (7)

With,

 = 1
( ) = ( )

dn

j jl jl
l

d t d f t∑           (8)

for unknown constant values jld  and known sig-
nals ( ) 1 = 1   1.jl d df t , j = ,...,m,l ,...n , n ≥

The actuator failure model given in (7) allows 
the approxima-tion of a great number of failure 
cases, by a judicious choice of the basic functions 

( )jlf t  [30].

We can rewrite (7) as follows,

( ) = ( )T
j j ju t tβ ϖ            (9)

Where 1 = ,  ,...,
d

T

j j j jnu d dβ     is the unknown fail-

ures values vector, and 1( ) = [1, ( ),..., ( )]
d

T
j j jnt f t f tϖ  is 

the chosen basic functions vector.

Type 2 - Partial loss of efficiency: In this case the 
input remains partially influenced by the applied 
control law.

0. ( ) =  ( ) ( ), 0 < ( )  1,  j j j ju t t v t t t tρ ρ ≤ ≥       (10)

In case there two types of failures conjointly, 
we can rewrite the control law as follows:

( ) = ( )(  - ) ( ) + ( )u t t I v t u tρ σ σ        (11)

Where 
{ } { }1 2 3 1 2 3( ) = diag , , ,  = diag , , ,tρ ρ ρ ρ σ σ σ σ  with 

 = 1jσ  if the thj  actuator has a failure and  = 0jσ  
otherwise.

The aim of the proposed control is to design a 
control strategy that allows the estimation and the 
compensation the actuators’ failures that occur in 
the system (1).

However it is mandatory for the controller to 
have a redundant actuators in order to be able 
to compensate the failures of one or multiple ac-
tuators, that means, these actuators do the same 
tasks.

In our problem, we suppose that the redundant 
actuators ( ),  1, 2,3ju t i =  contribute proportionally 
to the system regulation (see [5,30]), which has the 
advantage to render the control design procedure 
from a MISO problem to a SISO one. So, we can de-
fine the control to be applied as follows

0( ) = ( ) ( )v t b x v t          (12)

Robust adaptive control design
In this Section we will develop the proposed 
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the proposed adaptive control strategy by numer-
ical simulation we will consider the aerodynamic 
parameters of the delta wing modelized by Nayfeh, 
et al. [1] for different angles of attack α. Four actu-
ators are available on the aircraft and are perfectly 
redundant.

It is assumed that the model parameters are: c1 
= 0.354, c2 = 0.001, and the coefficients ai are given 
in Table 1.

First, we will simulate the system response with-
out any actuator failure with the initial conditions: 
φ (0) = 10°. The simulation result is shown in Figure 
4. We observe that the adaptive controller stabiliz-
es the system and eliminates the oscillations with 
a fast transitory response. We remark also that the 
system performance are not sensitive to the attack 
angle variations.

At the second stage we will simulate our regula-
tor in presence of different actuator failure scenar-
ios. Four cases are considered:

adaptive control law following the method pro-
posed in [5]. From (3), we can write,

 = ( ) + y f x u          (13)

In case there are two types of failures (11), the 
equation (13) becomes,

 = ( ) +  + ( ) (  - ) ( )y f x u x I v tσ ρ σ        (14)

Taking,

( ) = ( )(  - ) ( )g x p t I b xσ  and  = / ( )j j jk g xσ β∗

and replacing in (14), we get,
3

0
 = 1

 = ( ) + ( )  + ( ) ( )T

j j
j

y f x g x v g x k tϖ∗∑       (15)

Our objective is to design a control law 0 ( )v t  
that forces the output to follow the reference sig-
nal ( )dy t  (in our case  = 0dy ) and guarantees the 
closed loop stability of the nonlinear system in 
presence of disturbing terms that modelize the ac-
tuators failures which can occur during the system 
operation.

It is worth noticing that the control law design 
and stability analysis are detailed in [5]. We will 
give the resulting adaptive control law that satis-
fies the control objectives,

3

0
 = 1

 = ( ) ( )T T
j j

j
v E t k tθ ϖ− ∑         (16)

With the θ parameter updating and the un-
known term jk  given as follows,

1 0 0 = ( )(  + tanh  ( / ))E t s ks + k sθ η ε

       (17)

2 0 0 = - ( )(  + tanh  ( / ))j jk t s ks + k sη ϖ ε

       (18)

With j = 1, 2, 3.

In order to ensure that the parameters’ vector 
θ  is bounded and to improve the robustness of 
the adaptive control laws (17) and (18) in presence 
of approximation errors, a supplementary term σ  
has been introduced as follows [31,32],

101 0 = ( ) (  + tanh  ( / ))s ks +t  k sEθ η η σθε −

        (19)

2 0 0 2 = - ( ) (  + tanh  ( / ))j j jk t s ks + k s kη ϖ η σε −

       (20)

With j = 1,2,3.

In the next Section we will simulate the response 
of the system (5) by considering different cases of 
actuator failures.

Simulations Et Discussions
In order evaluate the tracking performance of 

1086420
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Figure 4: System response without failure: a) Output 
( )tφ ; b) Control input ( )u t .
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to oscillate as u3 (t) = 20 + 5 sin(5t) - 10 cos(5t).

As we can see in Figure 6, the controller com-
pensates the uncontrollable variations of the actu-
ator u3 and succeeds to stabilize the system with 
very negligible oscillations around 0 caused by the 
failing actuator. The control effort is portioned on 
the two other actuators to eliminate this undesir-
able effect.

Failure scenario 3
The initial conditions are φ (0) = 10°. The first 

actuator remains uninjured: u1 (t) = v1 (t), from the 
instant t = 3s the third actuator is blocked at 3 ( )u t  
= 15 then it retrieves its efficiency at the instant t 
= 8s: u3 (t) = v3 (t), for t > 6s the second actuator is 
only 30% efficient: u2 (t) = 0.3v2 (t).

As for the first scenario, we can remark from the 
Figure 7 that the controller is able to correct effi-
ciently the bad behavior due to the blocked actu-
ator with the remaining actuators even if partially 
efficient. The two observed deviations at instants t 
= 3s and t = 8s are caused by the blockage of u3 and 
the moment of its resumption respectively.

Failure scenario 1
The initial conditions are φ (0) = 10°. The first 

actuator remains intact: u1 (t) = v1 (t), and at the in-
stant t = 3s, the second actuator is in fail situation 
to 50% amount: u2 (t) = 0.5v2 (t), and the third ac-
tuator is blocked in 3u  = 10 beginning from t = 5s.

Figure 5 shows that the adaptive controller han-
dles perfectly the partial loss of efficiency of u2, and 
when u3 is blocked the control action redistributes 
the necessary effort in order to stabilize the system 
with the two still operating actuators. The moment 
of failure occurrence at t = 5s involves a small devi-
ation of the angle φ  which is quickly corrected by 
the controller.

Failure scenario 2
The initial conditions are φ (0) = 10°. The first 

actuator remains uninjured: u1(t) = v1(t), from the 
instant t = 3s the second one loses 50% of efficien-
cy: u2 (t) = 0.5v2 (t), and from the moment t = 5s the 
third actuator becomes uncontrollable and begins 

1086420
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Figure 5: System response in the failure case 1: a) 
Output ( )u t ; b) Control input ( )u t .
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Figure 6: System response in the failure case 2: a) 
Output ( )tφ ; b) Control input ( )u t .
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Many scenarios of multiple actuators’ failures 
have been simulated numerically to illustrate the 
efficiency of this robust adaptive controller. The 
simulation results show that the proposed adap-
tive control law is able to stabilize the aircraft even 
in case of actuator failure and system parameters 
variation.

However, this may lead to a large control signal, 
and this problem is to be addressed in future re-
search work. In particular, the use of fractional or-
der adaptive controllers to improve these encour-
aging results is being worked out.
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