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Abstract
In this paper, finite-time consensus of a group of nonlinear multi-agent systems in the presence of 
communication time delays is considered. The required criteria to guarantee the delay- independent/
dependent consensus are derived. The communication delays are not assumed time invariant, 
uniform, symmetric or even known. The only requirement is that all delays satisfy a known upper 
bound. The proposed strategy is appropriate for cases where an agent has a partial access to its 
neighbor agents signals with no need to estimate the unknown states. In the line of showing the 
consensus, the finite-time version of Lyapunov-Razumikhin theorem is utilized. The strategy applies to 
a large class of nonlinear systems. For verification of the proposed approach, simulation results on a 
group of mobile robot manipulators as the agents of the system are presented.

Keywords
Multi-agent systems, Finite-time consensus, Communication delay, Lyapunov-Razumikhin theorem, 
Delay-dependent consensus

There are two significant challenges associated 
with the performance of multi-agent systems that 
are mainly inevitable; The presence of time-delay 
in the communication between agents, and the 
rate of consensus achievement.

Classical stability analysis approaches consider 
the steady-state performance of the systems and 
study their stability during an infinite time interval; 
In which convergence of the system trajectories to 
the equilibrium is guaranteed. However, in many 
practical systems such as communication net-
works, robotic control systems, etc, the transient 
performance of the system is of great importance. 
We seek control objectives in a finite-time inter-

Introduction
In the past few decades, distributed cooperative 

control of multi-agent systems has been extensively 
studied [1]. In these systems, the main objective is 
designing local controllers for each agent to achieve 
an appropriate group behavior. Among different 
types of group coordination such as formation, 
flocking, coverage, rendezvous, etc, consensus over 
multi-agent systems has a wide variety of applica-
tions. Moreover, a consensus scheme is often ap-
plied to other types of multi-agent system coordi-
nation. Consensus control aims to achieve an agree-
ment among agents’ states, by designing controllers 
using the states or outputs of their neighbors.
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vex set and the objective is to reach a coordinate 
agreement towards the sets.

In none of the above references, the problem 
of the presence of time-delays in the communi-
cation between the agents has been considered. 
However, in the real world, many practical systems 
experience time delays because of the finite speed 
of information processing/transmission between 
agents and limited channels bandwidth. It is well 
known that a time delay may cause undesirable dy-
namic behaviors such as oscillation, performance 
degradation, and instability in the system. Consider 
a networked multi-agent system in which agents 
communicate with each other through links that 
suffer from inevitable communication delays. Be-
sides, in teleoperation systems that use communi-
cation networks for interaction among master and 
slave robots, time-delays are unavoidable. Since 
the whole stability of the system is influenced by 
time delays, one of the main tasks in such systems 
is reducing their adverse effects. Thus, it is neces-
sary to study multi-agent systems in the presence 
of time delays. There are few results in the context 
of multi-agent systems that consider time delay in 
the communication links between agents (see e.g., 
[13-16]).

None of the mentioned works studied fi-
nite-time control, and in all of them, linear dynamic 
networks are considered. In [17], the synchroniza-
tion analysis of the networked manipulators oper-
ating on an under- actuated dynamic platform in 
the presence of communication delays was per-
formed. There are also some few works consider-
ing the finite-time stability of time-delayed linear 
systems (see [18]) but none of them are applied 
for control of nonlinear multi-agent systems. In our 
recent work, [19], the finite-time consensus in the 
presence of time-delays was considered. However, 
the nature of delayed consensus is apparent in this 
work, and consensus between all agents does not 
happen synchronously, i.e., the consensus error is 
defined as xi (t) - xj (t - τ ), where τ is the communica-
tion delay and i, j are agent indices. Moreover, the 
delays are assumed to be known.

Our strategy to compensate the time-delay ef-
fect is providing a scheme. in which each agent has 
a local consensus control algorithm that uses its 
own signals and delayed signals of its neighbors. 
An agent does not have to possess all the neigh-
bor signals and only part of them is sufficient. Fur-

val, which is faster and more precise compared 
to stability in the traditional sense of Lyapunov. 
Consider a cooperative robotic system that fulfills 
several tasks ranging from approaching and grasp-
ing a given object to some more complicated and 
precise tasks like minimally invasive robotic sur-
geries. In these applications, reaching the goal in 
a finite-time is indispensable. Important criteria in 
such task performance are the convergence rate 
and ultimate bound of the consensus error. The 
strategy which brings up finite settling, error van-
ishing time can be beneficial; since it guarantees 
that the task is performed exactly as command-
ed. The finite-time stabilization concept originates 
from optimal control problems that pertain to the 
dynamical systems whose operation time is limited 
to a fixed finite-time interval [2]. Some more recent 
work in this field include [3-6].

The work of [7] analyzed the finite-time con-
vergence of a nonlinear consensus algorithm for 
multi-agent networks with unknown inherent non-
linear dynamics. For this aim, the authors proposed 
a stability tool based on a generalized comparison 
lemma and showed that the proposed nonlinear 
consensus algorithm can guarantee finite-time 
convergence if the directed switching interaction 
graph forms a spanning tree at each time interval. 
The master-slave finite-time synchronization con-
trol problem using an adaptive-fuzzy approach was 
considered in [8] for the networked teleoperation 
systems. They developed a new nonsingular fast 
terminal sliding mode (NFTSM) to provide faster 
convergence and higher precision compared with 
the linear hyperplane and classic terminal-sliding 
mode (TSM).

In [9], distributed adaptive finite-time continu-
ous control algorithms for leaderless consensus of 
nonlinear mechanical multi-agent systems under 
an undirected graph are suggested and transient 
performance in terms of convergence rates is an-
alyzed. Authors of [10] considered finite-time syn-
chronization between two complex dynamical net-
works by using periodically intermittent control. 
The work reported in [11] investigates the problem 
of finite-time consensus tracking for a class of mul-
tiple uncertain mechanical systems under switching 
topologies, uncertainties and input saturations. In 
[12], the authors studied the targeted agreement 
problem of a group of Lagrangian systems for fixed 
and switching graphs. Each system targets a con-
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Preliminaries
Communication graph [20]

A communication graph G is denoted by G = (V, 
E, A), where V = {1, ..., N} is a finite nonempty node 
set, E V V⊆ ×  is the edge set of pairs of nodes and 
A is the adjacency matrix.

The edge set E, represents the communication 
links between the nodes. The ordered pair ( ),  j i E∈  
shows that node i obtains information from node j. 
In other words, j is the neighbor of i. The neighbor 
set of node i is defined as ( ){ , }iN j j i E= ∈ . We 
assume that G does not contain any self loops. The 
adjacency matrix       N N

i jA a ×  = ∈   of G is de-
fined as aij = 1 if ( ),  ji E∈  and aij = 0 otherwise.

The in-degree of a node is the number of edg-
es that this node is the ending point for them. 
Similarly, the out-degree is the number of edges 
that this node is the beginning point for them. If 
the in-degree and out-degree are equal for all the 
nodes, the graph is said to be balanced. Assume 

1
  

N

i i j
j

d a
=

= ∑  as the in-degree of node i V∈  and 

{ ,..., }   N ND diag d d ×= ∈  . Hence, L = D - A is the 
Laplacian matrix of the graph G. When the graph G 
is undirected, i.e., ( )( , ) , ,i j E j i E L∈ ⇔ ∈  will be 
symmetric.

In this paper, we consider both undirected and 
directed communication graph topologies. We as-
sume the undirected graph is connected and the 
directed one is balanced and strongly-connected. 
Besides, since there are packet losses and asyn-
chronous clocks in the communications, there un-
avoidably exist delays in the transmission of agent 
signals. Therefore, the graph in this paper is con-
sidered along with communication time delays be-
tween the agents.

Lemmas
Lemma 1. [21] (Finite-time version of Lyapun-

ov-Razumikhin theorem ). Consider the system be-
low:

( ) ( )

.
, ,( ) ( ( )

 ,
( ))

[ ,0],
x t f x t x t h
x hθ ϕ θ θ

= −
= ∀



∈ −





��
         (1)

Where ( ) nx t ∈Ω ⊆   is the state vector, Ω is a 
bounded neighborhood of the origin. The function 
f(x(t), x(t-h)) is a continuous vector field which sat-
isfies f(0, 0) = 0, h > 0 is a constant time-delay and 

thermore, the communication time-delays can be 
time-varying, non-uniform, non-symmetric and 
even unknown. Besides, the proposed algorithm 
works for a large class of nonlinear systems. These 
characteristics extend the generalization of the pro-
posed consensus control algorithm. It is conspicu-
ous that establishing the multi-agent consensus is 
much more difficult in the finite-time sense, espe-
cially when there is a delay in the transmissions. 
The reason is that the dynamics of the cooperative 
system in the presence of delays are more compli-
cated and much more restrictive conditions should 
be confirmed in the case of finite-time consensus.

The contributions of this paper are threefold: 1) 
Design of a control law to guarantee the finite-time 
consensus in the presence of communication 
time-delays. In this regard, the sufficient conditions 
to establish the delay-independent/dependent 
consensus are presented. The difference between 
these two approaches is that in the delay-depen-
dent one, the consensus criteria depend on the up-
per-bound of delays and therefore is less conser-
vative. The suggestion of these new control strate-
gies is possible by defining a novel consensus error 
vector, which does not read a direct difference of 
agent’s signals, unlike the common consensus ap-
proaches. 2) Providing conditions by which the al-
gorithms work in the presence of partial access to 
the neighboring agent signals, which is a prevalent 
condition in many practical multi-agent systems, 
where the finite-time consensus is considered. 3) 
There are no strong restrictions about the commu-
nication time-delays between agents. They do not 
need to be constant, uniform, symmetric or even 
known. Instead, knowing an upper- bound on all 
of them is required. To the best of author’ knowl-
edge, it is the first time to extend the solution of 
finite-time consensus problem, which applies to a 
large class of nonlinear systems in the presence of 
communication delays.

The paper is organized as follows: In Section 4, 
some preliminaries including a short description 
of graph theory and required finite-time algorithm 
lemmas, the problem statement, system descrip-
tion, and its properties are presented. The delay-in-
dependent and delay-dependent consensus strat-
egies are provided in Section 5. Simulation results 
and conclusive points are given in Sections 6 and 7, 
respectively.
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The following assumptions hold for the system 
(7):

Assumption 1. The agents have the same dy-
namic structure as (7). However, the nonlinear 
functions (i.e., fi(xi(t)), ϕi(xi(t))) can be different.

Assumption 2. The functions ϕi(xi(t)) are invert-
ible.

Assumption 3. Communication delays between 
agents i and j can be time-varying, non-uniform and 
asymmetric, providing that they satisfy the follow-
ing requirement:

( ) [ ],   0,   ,  ,    1,  ...,  ,i j t d h i j Nτ ≤ ∈ =

Where d is a constant.

Remark 1. Considering Assumption 3, Lemma 1 
can be used with d as the delay of the system.

As conclusion, the complete dynamics of the 
multi-agent system consisting of N agents can be 
described as follows:

( ) ( )( ) ( )( ) ( )
.

     ,X t F X t X t U t= + Φ         (8)

Where

( ) ( ) ( )

( )( ) ( )( ) ( )( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )( )

TT T
1

TT T
1 1

TT T
1

1 1 2 2

  ,  ...,  ,

  ,  ...,  ,

  ,  ...,  ,

  ,  ,  ...,   .

N

N N

N

N N

X t x t x t

F X t f x t f x t

U t u t u t

diag x t x t x tφ φ φ

  

  

  

=

=

=

Φ =

and ⊗  is the Kronecker product notation.

Consensus Control Strategy
In this section, a consensus algorithm based on 

a novel consensus error is suggested. The criteria 
for the finite-time consensus of the coupled multi-
agent system in two senses of delay-independent 
and delay-dependent will be presented. In this pa-
per, by delay independent case, we mean that the 
conditions for establishing the finite-time consen-
sus are independent of the upper bound of delays. 
In the delay- dependent case, however, the condi-
tions depend on the mentioned upper bound. In 
[25], it has been affirmed that delay-independent 
criteria often provide more conservative evalua-
tions especially in cases of small and known delays. 
This fact led us to express delay-dependent consen-
sus conditions, too. Furthermore, the communica-
tions between agents can be through a connected, 
undirected graph or a balanced, strongly-connect-

φ(θ) is a vector value initial condition function. If 
there exist real numbers β > 1, k > 0, a class-K func-
tion σ and a C1 Lyapunov function V(x) for system 
(1), such that the following conditions hold when-
ever V (x(t + θ)) ≤ V(x(t)) for θ ∈ [-h, 0], then system 
(1) is finite-time stable.

( )
1.

( ) ( ),

 ( ), .

V x

V x kV x x

x

β

σ ≤

≤ − ∈Ω





�           (2)

Furthermore, if nΩ =   and σ is a K∞ function, 
then the origin would be globally finite-time stable. 
In addition, the settling time of the system (1) with 
respect to the initial condition ϕ satisfies the fol-
lowing equation for all t ≥ 0:

1

0( ) ( ).
( 1)

T V
k

β
ββφ φ

β

−

≤
−

          (3)

Lemma 2. [22] Consider real matrices A, B and 
symmetric positive-definite matrix C and a scalar ϵ. 
The following inequality holds:

ATB + BTA ≤ εATCA + ε-1BTC-1B.          (4)

Lemma 3. [23] For  , ix ∈   i = 1, ..., n, 0 < p ≤ 1, 
the following inequalities hold:

1

1 1 1
    ( | | ) | | ) ( | | ) .

n n n
p p p p

i i i
i i i

x x n x−

= = =

≤ ≤∑ ∑ ∑           (5)

Lemma 4. Hermite-Hadamard inequality [24]: If 
a function : ,[ ] f a b →   is convex, then the fol-
lowing chain of inequalities hold:

( ) ( ) ( )1  .
2 2

b

a

f a f ba bf f x dx
b a

++  ≤ ≤  −  ∫    (6)

Model description
In this paper, the following class of nonlinear 

systems is considered for N agents of the multi-
agent system:

.

,

( ) ( ( )) ( ( )) ( )
( ) ( ( ) (

,
, )),

i i i i i i

i i j i j

x t f x t x t u t
u t g x t x t

φ
τ

= +
= −

         (7)

Where i, j = 1, ..., N . The indices i and j repre-
sent each agent and its neighbors, respectively. 
Moreover, n

ix =   is the state vector, n
iu =   is 

the vector of control input signals which is a func-
tion of current agent’s signals and the delayed sig-
nals of the neighbors. The communication delay 
from agent j to i is τi,j. Besides, ( )( ) n

i if x t ∈  and 
( ( )) n n

i ix tφ ×∈  are nonlinear functions.
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ed digraph.

First, consider the following consensus error vector:

( ) ( )( .) ne t M I X t= ⊗                              (9)

For the undirected graph topology, matrix M is a vector consisting of the left eigenvectors of the Lapla-
cian matrix of the multi-agent system corresponding to N - 1 nonzero eigenvalues of the laplacian matrix. 
In other words, if the Laplacian matrix eigenvalues are arranged from the smallest value to the largest 
one, i.e., λ0 = 0 to λN-1, the matrix M , in this case, is defined as follows:

( )

T
1

T
1 1

.
 . .

.

N N N

v

M

v − − ×

 
 
 
 =
 
 
  

                                         (10)

Note that the eigenvectors of the Laplacian matrix of an undirected graph; which is also symmetric, 
are perpendicular to each other. It is also known that the corresponding eigenvector of the eigenvalue λ0 
= 0 is T

1 11  = [1 ...  1] .N N× ×  Thus, it will be concluded that each row of the matrix M is perpendicular to 11N× . 
Therefore, e(t) = 0, i.e., (M ⊗  In) X(t) = 0, if and only if

1 1
. .
.  = ,.
. .

1N

X

K

X

   
   
   
   
   
   
     

                           (11)

Where, k is a real number. Thus, the consensus is achieved.

For the directed graph topology, consider l = [l1, ..., lN ]T as the left eigenvector of a Laplacian matrix 
of a strongly-connected directed graph associated with the zero eigenvalue. It is easy to show that 0 is a 
simple eigenvalue of the matrix (IN - 1lT) with 1 as a right eigenvector and 1 is the other eigenvalue with 
multiplicity N - 1. Provided that the digraph is balanced, (IN - 1lT) is symmetric. Therefore, in this case, ma-
trix M is constructed from the matrix (IN - 1lT) the same manner as it was constructed from the Laplacian 
matrix of the undirected graph.

Delay-Independent algorithm
In this section, the objective is to design a control protocol for the agents of the system to achieve con-

sensus in a finite time. Consider the following consensus control algorithm for each agent of the system 
(7):

( ) ( )( )

( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

1 1
2 1

1

1
T 2 1

2 1
T 2 1

 +  + 

 = - , - 

i

T
i i i i i

i i i i i i

j N
j j j

f x t K x t x t x t

u t x t x t d x t d x t d
K

x t d x t d x t d

α
α

α
α

α
α

ϕ

− −
−

−
−

−
∈ −

 
 
 
  
 − − − 
  
   − − −      

∑
             (12)

Where  
1 2

 ,   n nK K ×∈   are appropriate gain matrices which should satisfy some conditions given later. 
In addition, α is a real number greater than 1. Therefore, the complete control signal of the multi-agent 
sytem (8) is obtained as
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( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1
T 2 1

11

1
T 2 1

2

 +    + 
 = - ,

    

N

N n

F X t I K X t X t X t
U t X t

I K L I X t d X t d X t d

α
α

α
α

−
−

−

−
−

 
⊗ 

Φ  
 ⊗ ⊗ − − − 

           (13)

in which,   NNL ×∈ is the Laplacian matrix of the system. Furthermore, consider the following defini-
tions:

( )( )( )
( )( )( )( )

( ) ( )

1

2

T

 =       ,

 =         ,

 =      ,

n N n

n N n n

n n

R M I I K M I

S M I I K L I M I

P M I M I

+

+

+ +

− ⊗ ⊗ ⊗

− ⊗ ⊗ ⊗ ⊗

⊗ ⊗

               (14)

Where, N and n are the number of agents and agents’ states, respectively. Moreover, (.)+ indicates the 
right pseudo-inverse of a non square matrix, (i.e., A+ = AT (AAT)-1). As the matrix M is constructed from the 
(strongly-) connected graphs, P is a positive-definite matrix.

Theorem 1: Consider the multi-agent system defined in (8) satisfying the Assumptions (1)-(3) and the 
consensus error definition of (9). Utilizing the control signal of (13), the delay-independent finite-time con-
sensus in the presence of communication time-delays is achieved if there exists a positive scalar a such that 
the following inequality holds.

( ) ( )

( )

T
1  

T  12   1
1 max min

21    1
2   1

max

 = ë ë ( )  +  +  
2  - 1

+ ë ( )   1  < 0
2  - 1

q P R R a S S

a P n N

α
α

α α
α α

α
α

α
α

−
−−

− −
−

 
 
 

 
−    

 

.              (15)

Furthermore, the finite consensus time, tci, is bounded by

( ) ( )
 - 1

1

   0
1cit V

q

α
α

α
α
−

≤
−

.                  (16)

Proof. Consider the following Lyapunov function for the error dynamics:

( ) ( ) ( )( )T 2  - 1 = V t e t e t
α

α                    (17)

By getting the derivative of (17) one can reach to the following:

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
1 - 

T T T2  - 1 =  + 
2  - 1

V t e t e t e t e t e t e t
α

αα
α



                 (18)

In addition, getting the derivative of e(t), we obtain:

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) =    =    + n ne t M I X t M I F X t X t U t ⊗ ⊗ Φ 


 .             (19)

After substitution of (13) in (19), the following relation is obtained:

( ) ( )( ) ( ) ( )( ) ( )

( )( )( ) ( ) ( )( ) ( )

1
T 2 1

1

1
T 2 1

2

 = -     

        -  -  - .

n N

n N n

e t M I I K X t X t X t

M I I K L I X t d X t d X t d

α
α

α
α

−
−

−
−

⊗ ⊗

− ⊗ ⊗ ⊗



              (20)

In addition, by replacing ( )X t and ( ) - X t d with ( )e t and ( ) - e t d , respectively, using (9) and some 
manipulations, it is concluded that: 
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( ) ( ) ( )

( )( )( ) ( ) ( )( ) ( ) ( )( )
( )( )( )( )

( ) ( )( ) ( ) ( )( ) T

1 - 
 TT 2  - 1

1

 + T T
2

1  
2   1T

           

 =         .

X  -  -       

n N n n n

n N n n

n n

M I I K M I e t e t M I M I e t

e t e t e t M I I K L I M I

e t d e t d M I M I e t d

α
α

α
α+

+ + +

−
−

 
  − ⊗ ⊗ ⊗ ⊗ ⊗ −  

  ⊗ ⊗ ⊗ ⊗   
 

⊗ ⊗ + − 
 



           (21)

Substituting (21) in (18) leads to the following equation:

( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )( )

1 - 1 - 
T T T2  - 1 2  - 1

1

1 - 1 - TT T T2  - 1 2  - 1
1

1 - 
T T 2  - 1

2

 =       
2   1

       
2   1

         
2   1

n N n

n N n

n N N

V e t e t e t M I I K M I e t e t Pe t

e t e t e t M I I K M I e t e t Pe t

e t e t e t M I I K L I M

α α
α α

α α
α α

α
α

α
α
α

α
α

α

+

+

 − ⊗ ⊗ ⊗ −

 + − ⊗ ⊗ ⊗ −

+ − ⊗ ⊗ ⊗ ⊗
−



( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )( )( ) ( ) ( ) ( )( )

1 - 
T 2  - 1

1 - 1 - TT T T2  - 1 2  - 1
2

    

               .
2   1

n

n N N n

I e t d e t d Pe t d

e t d e t e t M I I K L I M I e t e t d Pe t d

α
α

α α
α αα

α

+

+

  − − − 

 + − − ⊗ ⊗ ⊗ ⊗ − − −        

(22)

Using the consensus error vector equation and utilizing the mentioned definitions in (14), (22) can be 
written as follows:

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

1 - 1 - 
T T T2  - 1 2  - 1

1 - 1 - 
T T T T2  - 1 2  - 1

1 - 1 - 
T T T2  - 1 2  - 1

1 - 1 - 
T T T T2  - 1 2  - 1

 
 = 

2  - 1
     

       

e t e t e t Re t e t Pe t

e t e t Pe t R e t e t e t
V

e t e t e t Se t d e t d Pe t d

e t d e t d Pe t d S e t e t e t

α α
α α

α α
α α

α α
α α

α α
α α

α
α



+

+ − − −

+ − − −

 .


 
 
 
 
 
 
 
 
 

           (23)

Rewriting the last two terms of (23) in the quadratic form, the following inequality will be acquired:

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

1 - 1  1 - 
T T T T2   1 2   12   1

min

1 - 1 - 
T T T2   1 2   1

1 - 1 - 
T T T 1 T2   1 2   1

min

  ë  + 
2   1

2        
2   1

  ë  +    
2   1

V t P e t e t e t R R e t e t e t

e t e t e t Se t d e t d Pe t d

e t e t e t P R R a S S

α αα
α αα

α α
α α

α α
α α

α
α

α
α

α
α

−
− −−

− −

−− −

≤
−

+ − − −
−

 ≤ + − 



( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1 - 
T 2   1

2 1 - 1 - 1 - 
T T T2   1 2   12   1

max  ë          -   .
2   1

e t e t e t

a P e t d e t d e t d e t d e t d e t d

α
α

α αα
α αα

α
α

−

− −−



 + − − − − − − 

(24)

Finally, ( )V t can be expressed as below:

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

11 - 
T  1 T T 2  - 12  - 1

max min

2 11 - 
T 2  - 12  - 1

max

  ë ë  +  + 
2   1

 + ë     .
2   1

V t P R R a S S e t e t

a P e t d e t d

α
αα

α
αα

α
α

α
α

− ≤  − 

  − − − 



             (25)

In addition, the last term of (25) can be written as below by utilizing Lemma 3 and meeting the required 
condition of Lemma 1:
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( ) ( )( ) ( )( )
( )

( ) ( )( )
( )

( ) ( ) ( )( ) ( ) ( ) ( )

1 1
 - 1  - 11  - 1

2 2T 2  - 1 2  - 12  - 1

  1   1

1
 - 1  - 1 1

T 2  - 1

     =       1   

 =   1        - 1  -     1

n N n N

i i
i i

e t d e t d e t d n N e t d

n N e t d e t d n N V t d n N

α αα αα
α αα α

αα αα
αα α α

= =

   
− − − ≤ − −     

      

 
− − − − ≤ −        

 

∑ ∑

( )
 - 1 1

.V t
α

α α 

     (26)

Therefore, after substitution of (26) in (25), the following relation for the Lyapunov function dynamics 
will be achieved:

( ) ( ) ( ) ( ) ( ) ( )
2  - 11 - 1 - 1

T  1 T2  - 1 2  - 1
max min max  ë ë  +  +  + ë   1 .

2   1 2   1
V t P R R a S S a P n N V t

αα α
αα α α

α α
α α

−
    ≤ −      − −    

  (27)

 

In conclusion, if q defined in (15) establishes the mentioned inequality, the proof is complete and the 
finite- time consensus in the presence of communication time-delay will be proved.

Remark 2. Whenever the accessibility to all states of the neighbor agents is not possible, the control 
signal can be changed to the following form:

( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( )

1 - 
T 2  - 1

1- 1
1 - 

T T 2  - 1
3

 +   
 = - ,

 +      -  -  - 

N

N l

F X t I K X t X t X t
U t X t

I K L I X t d C C X t d C X t d

α
α

α
α

 
⊗ 

Φ  
 ⊗ ⊗ 

         (27)

in which a new control gain   
3

n lK ×∈  with l as the number of accessible neighbor outputs is utilized. 
Besides, C = diag ( )   1, 2, ....., Nl NnC C CN ×∈  is the augmented output matrix of the multi-agent system. 
Consider the following new definitions:

( )( )( )( )( )1 3 = -         n N l nS M I I K L I C M I +⊗ ⊗ ⊗ ⊗ ,               (29)

( ) ( )( ) T  + T
1  =     .n nP M I C C M I+⊗ ⊗

By choosing appropriate matrices K1 and K3 and provided that there exists a positive scalar a to satisfy 
the following inequality, the finite-time consensus for this case is established.

( ) ( ) ( ) ( ) ( )
2  - 11 - 1 - 

T  - 1 T2  - 1 2  - 1
max min 1 1 max 1ë ë  +  +  + ë  - 1  < 0.

2  - 1 2  - 1
P R R a S S a P n N

αα α
αα α

α α
α α

            
      (30)

Delay-Dependent algorithm
Theorem 2. Consider the multi-agent system defined in (8) satisfying the Assumptions (1)-(3) and the 

consensus error definition of (9). Utilizing the control signal of (13), the delay-dependent finite-time con-
sensus in the presence of communication time-delays is achieved if there exist positive scalars a and b 
such that the following inequalities hold.

( ) ( ) ( )

( ) ( )

 - 11 - 
T  - 1 T2  - 1

2 max min

2  - 11 - 
2  - 1

max

q =ë ë  +  +  +  - 1  + 1
2  - 1 2

 + ë  - 1  < 0,
2  - 1

bdP R R a S S n N

a P n N

αα
αα

αα
αα

α
α

α
α

          

       

             (31)

( )( ) ( )
T

min  - 1ë  +  -   0n NP R R bI ≤ .                  (32)

In addition, the finite-time of consensus tcd for this case is as follows:

( ) ( )
 - 1

2

 -   0
 - 1cdt V

q

α
α

α
α

≤ .

Proof. The relation (20) can be written as follows:
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
1 - 1 - 

T T2  - 1 2  - 1 -  -  -  -  -  = 0e t Re t e t Pe t Se t d e t d Pe t d
α α

α α
 .            (33)

Using Lemma 2 and what was obtained from the proof of Theorem 1, the following inequality is formed:

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

11 - 
T  - 1 T T 2  - 12  - 1

max min

2 11 - 
T 2  - 12  - 1

max

  ë ë  +  + 
2  - 1

 + ë  -  - .
2  - 1

V t P R R a S S e t e t

a P e t d e t d

α
αα

α
αα

α
α

α
α

 ≤   

 
 
 



             (34)

By adding (33) (which has been multiplied by ( ) ( ) ( )( )
1 - 

T T 2  - 1

 - 

2
t

t d

e S e S e S ds
α

α∫ ) to the right side of (34) 
and after some simple manipulations we have the following:

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )

11 - 
T  - 1 T T 2  - 12  - 1

max min

2 1 1 - 1 - 
T T T2  - 1 2  - 12  - 1

min
 - 

1 - 
T T2  - 1

  ë ë  +  + 
2  - 1

 + ë  -  -  + 2
2  - 1

  - e  +  +  -  - 

t

t d

V t P R R a S S e t e t

a P e t d e t d e S e S e S

s Re s e S Pe S Se S d e S d

α
αα

αα
α αα

α
α

α
α

α
α

 ≤   

 
 
 

×

∫



 ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

1 - 
2  - 1

11 - 
T  - 1 T T 2  - 12  - 1

max min

2 11 - 
T 2  - 12  - 1

max

1 - 1 - 
T T T2  - 1 2  - 1

 - 

 - 

 = ë ë  +  + 
2  - 1

 + ë  -  - 
2  - 1

 + 2  + 
t

t d

Pe S d ds

P R R a S S e t e t

a P e t d e t d

e S e S e S Re s e S Pe S Se

α
α

α
αα

α
αα

α α
α α

α
α

α
α

 
 
 

 
  

 
 
 

∫ ( ) ( ) ( )( )
( ) ( )

1 - 
T 2  - 1 -  -  - 

 - 2  + 2  - .

S d e S d Pe S d ds

V t V t d

α
α

 
 
 

                       (35)

On the other hand, using Lemma 4 we obtain

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
1 - 1 - 1 1

T T T T T2  - 1 2  - 1 2  - 1 2  - 1

 - 

   +  -  - 
2

t

t d

bdb e s e s e s e s e s e s ds e t e t e t d e t d
α α

α α α α
 

≤  
 

∫ ,     (36)

Where b is a positive real number.

Besides, utilizing (26) and meeting the required condition of Lemma 1 the following is acquired:

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
1 - 1 -  - 1 1

T T T2  - 1 2  - 1

 - 

 -    - 1   1   0.
2

t

t d

bdb e s e s e s e s e s e s ds n N V t
α α α

α α α α
 

+ + ≥   
 

∫        (37)

By adding the left side of (37) to the right side of (35) and rewriting the integral terms in a quadratic 
form, the following inequality is established:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

 - 11 - 
T  1 T2  - 1

max min

2  - 11 - 1
2  - 1

max
 - 

  ë ë  +  +  +  - 1  + 1  + 
2  - 1 2

ë  - 1  + E .
2  - 1

t
T

t d

bdV t P R R a S S n N

a P n N V t s s ds

αα
αα

αα
αα α

α
α

α ζ ζ
α

−   ≤         
         

∫



          

(38)

Where

( ) ( ) ( ) T
 =    - ,s s s dζ Ξ Ξ  
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( )( ) ( ) ( )
( )

T
min max - 1

T
max

ë  +  - ë
 = ,

ë 0
n NP R R bI P S

E
P S

 
 
  

                (39)

( ) ( ) ( ) ( )( )
1 - 

T T 2  - 1 = .s e s e s e s
α

αΞ

By considering Schur complement Lemma we have

( )( ) ( )
T

min  - 1  0  ë  +  -   0n NE P R R bI≤ ↔ ≤ .                (40)

Therefore, provided that the inequalities of (31), (32) and conditions of Lemma 1 are satisfied, the de-
lay- dependent finite-time consensus is guaranteed.

Remark 3. Note that the structure of consensus control signal for both delay-independent and delay- 
dependent algorithms are the same, as stated in (13). The main difference between the two cases lies in 
the sufficient conditions for achieving finite-time consensus (see (15) and (31)).

Remark 4. Suggested algorithms could be extended for the leader-follower scenario. For this aim, an 
error is defined for the leader agent, which is the deviation between its state trajectories and the refer-
ence signal. Then, we augment this error with the followers error, which is defined the same as (9). Appro-
priate stability criteria could be extracted for the new augmented system similar to what was proposed 
according to Theorems 1 and 2.

Simulation Results
In this section, to evaluate the effectiveness of the proposed approach, simulations are performed on 

a group of four identical nonholonomic mobile robots as the agents shown in Figure 1. The mobile robots 
consist of a vehicle with two driving wheels mounted on the same axis and a front freewheel. The mo-
tion and orientation are achieved by independent actuators, e.g., dc motors which provide the necessary 
torques to the rear wheels. The nonlinear dynamics of each robot in a n dimensional configuration space 
with coordinates (q1, ..., qn) and subject to m constraints are as below described in [26].

( ) ( ) ( ) ( ) ( ) ( )T¨  ,  ÿ ÿ  ÿ          ,
cc c c c d c cM q q V q q q F q G q B q A q µτ τ+ + + + = −              (41)

Where

( ) ( )
0 sin 0 0 cos

 = 0  cos , ,  = 0 0 sin ,
sin  cos 1 0 0 0

c c

m md md
M q m md V q q md

md md

θ θ θ
θ θ θ

θ θ

  
  −   
  −   







( ) ( )1 T

2

cos cos  - sin
1 = ,  = sin  sin ,  = cos ,

  
c c cB q A q

R R d

θ θ θ
τ

τ θ θ θ
τ τ

   
     
          − −   

     

( ) ( ) = 0,  = cos  + sinc c cG q m x yµ θ θ θ− 

  .

The inertia matrix ( )     n n
cM q ×∈  is symmetric positive definite , ( )   ,   n n

cV q q ×∈
  is the coriolis and 

centripetal matrix, ( )   1  n
cF q ×∈

  stands for the surface friction, ( )   1  n
cG q ×∈�   denotes the gravita-

tional forces, dτ  is the bounded unknown disturbance including unmodeled dynamics, ( )   1  n
cB q ×∈�   in-

dicates the input transformation matrix,   1  n
cτ ×∈  is the input vector and ( )     1  ,    m n m

cA q µ× ×∈ ∈�
   

are the constraint associated matrix and vector force, respectively.

Furthermore, kinematic equality constraints can be expressed as follows:

( )  = 0cA q q .                   (42)

There would be a full rank matrix ( ) ( )   -   n n mS q ×∈�  constituting a set of smooth linearly independent 
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vector fields which span the null space of ( )cA q , i.e.
T T  ( ) .) 0( cS q A q =                     (43)

According to (42) and (43), a vector time function ( )  -   n mv t ∈  could be found such that for all t

( ) ( )ÿ .q S q tν=                     (44)

The nonholonomic constraint forces the robot to move only in the direction normal to the axis of the 
driving wheels. If r = n - m, after transformation from q coordinates to ν configuration, the new input ma-
trix cB  would be a constant nonsingular one which depends on the distance between the driving wheels 
and the wheel radius, which brings up an appropriate form to the proposed strategy. In this case, the 
mentioned matrices can be described as follows:

1

2

T

 =  = ,

cos  sin
 =  = sin cos ,

0 1

1 11 =  = ,
 

c

c

c c

v

x d
q y d

B S B
R R

υ υ
υ ω

θ θ
υ

θ θ
ω

θ

τ

   
   

  
−   

    
            

 
 − 



                   (45)

Where v and w are the linear and angular velocities of the mobile robot. Besides, xc and yc are indica-
tors of its position and θ is the corresponding orientation. For the simulations, the agents communicate 
with each other via the specified directed graph in Figure 2. According to the graph topology, the Lapla-
cian matrix is as follows:

g

1 0 0  1
 1 1 0 0

 = 
0  1 1 0
0 0  1 1

L

− 
 − 
 −
 − 

.

The eigenvalues of the Laplacian matrix and the resulting matrix M to build the consensus error vector 
are as

θ

yc

xc

Driving 
Wheel

Passive 
Wheel

Motor and 
Encoder

Y

X

d

Figure 1: A nonholonomic mobile platform.

Figure 2: Directed communication graph.
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{ }
0.0771 0.2992  0.3927 0.0164

 = 0,1 + ,1 - , 2 ,   = 0.1178 0.1751 0.1386    0.4316 .
 0.4095 0.2594 0.1185 0.0316

i i M
− 

 λ − 
 − 

Therefore, it is concluded that P = 4 × I6. The nominal parameters of the model are taken as mi = 10 
kg as the mass of vehicle, Ri = 0.5 m for the distance between driving wheels, ri = 0.05 m for the radius of 
wheels and di = 0.04 m as the distance between the center of mass of the vehicle and wheels (i = 1, ..., 4). 
The initial conditions of agents are set as v(1) = [0.2, 0.6]T, v(2) = [0.5, 0.1]T, v(3) = [0.6, 0.5]T, v(4) = [0.3, 
0.7]T. In addition, the delays between all connected agents are chosen as (0.1 + 0.25e−t)s.

The control signal parameters are set as K1 = 5 × I2 for the case of Figure 3 and K1 = 12 × I2 for the cas-
es of Figure 4 and Figure 5. K2 = 2 × I2 for the cases of Figure 3 and K3 = [3.2 2.4] for the cases of Figure 4 
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Figure 3: Finite-time consensus with full access to neighbor signals: a) Consensus of linear velocities; b) Consen-
sus of angular velocities; c) Consensus control signals; d) Lyapunov function.
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Figure 4: Finite-time consensus with partial access to neighbor signals: a) Consensus of linear velocities; b) Con-
sensus control signals; c) Consensus control signals.
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interval, a novel consensus algorithm with two ap-
proaches, i.e., delay- independent/dependent was 
proposed. The algorithms may be used for cases 
with partial access of agents to their neighbor sig-
nals. Besides, there are no strong restrictions on 
the communication time-delays. Furthermore, the 
results of simulations on a group of mobile robot 
agents confirmed the theoretical findings. Future 
works include designing robust approaches with 
respect to the agents dynamics and considering 
Leader-follower scenarios and time-varying graph 
topologies.
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and Figure 5. These cases will be introduced later. 
By choosing such values for the control signal, all 
the required conditions mentioned in (15), (31) and 
(32) are satisfied with α = 1.3, a = 6 and b = 0.1. 
Besides, we obtain tcd ≤ 4.8 s for the first sce-
nario and tcd ≤ 7.2 s for the others.

The simulation results are shown in Figure 3, Fig-
ure 4 and Figure 5. In Figure 3, full access of the 
agents to their neighbor agent signals is considered 
and linear and angular velocities consensus, control 
signals and evolution of the Lyapunov function are 
shown in Figure 3a, Figure 3b, Figure 3c and Figure 
3d, respectively. In Figure 4, it is assumed that each 
agent only has accessibility to the delayed linear 
velocity signals of its neighbors and angular veloc-
ities of the neighbors are not available for them. 
Consensus of linear and angular velocities of agents 
and control signals in this case are presented in 
Figure 4a, Figure 4b and Figure 4c, respectively. 
Besides, in Figure 5, the dynamic finite-time con-
sensus condition in which the agents reach to the 
same velocities, with respect to a time-varying ref-
erence signal, and keep on moving with them are 
provided. Results show a good convergence rate to 
the desired values. It is worth mentioning that all 
scenarios are simulated with the delay-dependent 
finite-time consensus criterion. As mentioned be-
fore, the delay-independent one brings conserva-
tive results especially in the presence of small and 
known delays.

Conclusions
In this paper, the problem of finite-time con-

sensus of a class of nonlinear systems in the pres-
ence of communication delays was considered. To 
compensate for the adverse effects of time-delay 
in communication between agents in a finite time 
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Figure 5: Finite-time dynamic consensus: a) Consensus of linear velocities; b) Consensus control signals; c) Con-
sensus control signals.
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