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Abstract

This paper aims to model and guide the motion of an n-link revolute robot arm manipulator by
implementing an efficient proportional-integral-derivative (PID) control strategy. The n-link robot arm
manipulator we examine shares similarities with a pendulum system comprising n arms and n masses.
This system features a stationary point around which n distinct links, each carrying a mass at its end,
are interconnected. We first derive the equations of motion using Lagrangian formulation. We then
implement a PID controller for the robot manipulator, enabling it to attain designated target positions
as required. These equations are represented by a second-order system of nonlinear ordinary
differential equations. Due to the absence of closed-form solutions for the equations of motion, we
employ the classical fourth-order Runge-Kutta method to approximate the solution of the initial-value
problem. Due to the inherent nonlinear nature, achieving precise control over the motion of the n-link
robot manipulator at user-defined positions poses a challenging endeavor. In light of this, our primary
emphasis centers on controlling the robot manipulator to attain the desired position using the PID
controller. Numerous computer simulations are conducted to validate the controller’s performance.
Notably, a PID controller is presented as part of the simulations, illustrating how we can achieve
balance for the n links with n = 3 - 6 on a moving robot at various angles.
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Introduction to enhancing human livelihoods, enabling their
endeavors and innovations, ultimately leading
to improved quality of life. An overview of
commercially available robotic manipulators,
sensors, and controllers can befoundin[1]. The field
of robotic manipulator control is a well-established
and promising domain that encompasses research,
development, and manufacturing. Industrial robots

The purpose of this paper is to design a
nonlinear proportional-integral-derivative (PID)
controller for trajectory tracking of a manipulator
robot. Robotic arms play an essential role in various
sectors, including manufacturing, transportation,
and healthcare. They contribute significantly
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primarily function as positioning and handling devices. Hence, a valuable robot possesses the capability
to control its motion along with the interactive forces and torques occurring between the robot and its
surroundings.

Robot Manipulators are composed of links connected by joints into a kinematic chain. These joints
predominantly consist of rotary components capable of achieving a diverse range of motions, thereby
imparting flexibility and maneuvering capabilities to the robot. The n-link robot arm manipulator closely
resembles an n-pendulum system with n arms and n masses, where there exists a fixed point about
which n different links with a mass at the end of each are connected upon. Each adjacent mass and link
combination forms its own simple pendulum such that the system contains n total simple pendulums,
each conjoined with one another to form an n-pendulum system. When released from an arbitrary
position without control, each pendulum is able to freely oscillate on the xy-plane. While the system itself
is simple dynamically, the behavior exhibited by it is complex and nonlinear. In order to understand this
behavior and define the motion of the system, we design a nonlinear PID controller for trajectory tracking
of a manipulator robot.

Achieving precision and speed in the movements of a robot manipulator is critical in its efficiency. In
this paper, we propose a proportional-integral-derivative (PID) control to achieve this. To define clearly
designated parameters and to track the position of the system within those parameters we use a PID
controller. The PID controller has three parts: a proportional (P) controller, an integral (1) controller, and a
derivative (D) controller. This allows for the optimization of speed, stability, and precision. Subsequently,
PID controllers are known to be reliable and efficient, considered a building block in industrial technology
and the standard control in industrial robotics as well as research [2].

Other control systems have been examined as well for the n-link manipulator. An overview of various
control theory concepts that are used in the control of robots can be found in [1]. In [3], the authors
presented a numerical solution of the second-order robot arm control problem using the Runge-Kutta-
Butcher algorithm. Research has also formulated using sets of stabilizing decentralized PID controls with
Kharitonov’s theorem for n-link manipulators to track positions and was successfully simulated on a
two-link manipulator [4]. Recently, in [5], we designed a robust, fast, and practical PID controller for
the classical double pendulum system. We first derived the equations of motion for the two-link robot
manipulator using the Lagrangian approach. We used the classical fourth-order Runge-Kutta method to
approximate the solution of the nonlinear system of second-order ordinary differential equations. We
focused mainly on control of the robot manipulator to get the desired position using the PID control
approach. In this paper, we extend the approach to an n-link robot manipulator for any n. More recently,
an Adaptive Observer Based Neural Control for flexible-joint manipulators has been researched, utilizing
the backstepping method with Lyapunov stability theory [6]. A Sliding Mode Control employed with the
super-twisting method has also been successfully applied to robot manipulators, demonstrating fast error
convergence and angular velocity approximation for each link [7]. Others have used the Lyapunov-based
Control Scheme for linear n-link manipulators mounted on mobile sliders to navigate links [8].

In this paper, we propose a PID control for an n-link robot manipulator to guide its motion from an initial
position to a target position on a plane in Figure 1. We first derive the total potential and kinetic energies
for the n-link system. Then, we explicitly find the so-called Lagrangian. The Euler-Lagrangian equation
[9] is then used to define the torques for each link. Our proposed PID controller uses the classical fourth
order Runge-Kutta method [10] to approximate the angles and torques of the links relative to the x-axis
from a system of nonlinear differential equations and initial conditions. The numerical approximations
are performed by Java code. The system of differential equations our method relies on is based on the
equations of motion for the n-link robot manipulator. These equations of motion are derived through
Lagrangian dynamics, specifically from the Euler-Lagrange equation that is based on the total kinetic and
potential energies of the n-link robot manipulator system. Through this control derivation, we are able
to obtain the most precise and efficient guidance of the manipulator’s motion to its designated target
positions. This is demonstrated through subsequent simulations of the control that we perform.
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Figure 1: n-Link planar robot manipulator

Figure 2: The initial position (left) and the final position (right) for Example 6.1.

The paper is organized as follows. Section 2 presents the derivation of the equations of motion for
the n-link robotic manipulator using the Lagrangian approach. Furthermore, the procedure for obtaining
numerical solutions using the classical fourth-order Runge-Kutta method is detailed. The design of the
PID controller for the n-pendulum system is expounded upon in Section 3. Section 4 provides a series of
numerical examples intended to evaluate the performance of the PID controller. Concluding remarks are
offered in Section 5.

Dynamics Equations

The robot manipulator is a device composed of multiple conjoined arms, joints, and links integrated
with a control mechanism designed to manipulate objects and perform physical tasks without manual
human intervention. Robot manipulators are consequently vital to the world of industry and everyday life
in assembly, automation, manufacturing, logistics, and more.

A typical application involving an industrial manipulator with n revolute links is shown in Figure 2. This
robot can be viewed as a pendulum made of n massesm,, m,, ..., m andnrods of lengths € , € ,..., € .

n
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For our model problem, we consider a Cartesian coordinate system with origin placed at the base of
the robot.

The equations of motion

We may understand the n-link robot manipulator as an n-link pendulum system on a two-dimensional
plane. This system consists of n weightless bars, having lengthsof €, €, ..., € . There exists a mass at the
end of each bar such that there are n masses in total connected by the bars. Denote these n masses as m,
m,, ..., m . Each bar may rotate freely, where the first bar rotates about the origin and each subsequent
bar rotates about the endpoint of its preceding bar, producing n degrees of freedom. The angles for each
of these degrees of freedom produced by the bar relative to the x-axis may be denoted as ¢, 0, . . .,
U . Such a system exhibits chaotic motion that may be studied through Lagrangian dynamics. In order to
derive the equations of motion through Lagrangian dynamics, we must first solve for the kinetic energy
and the potential energy of the system.

Let (x, y) denote the position of the mass m for eachi=1,2,...,n. The position (x, y) of m at time t is
given by the equations:

xi=Zchosé?j, y, = Z;f sing,, i=1,2,...n. (4.1)
J

j=1
The velocity of mass m, denoted as v, is given by

V; =in2 +j}i2> i=1a2a-">n7 (42)

where X, and y, are, respectively, the derivative of x, and y, with respect to t. Since
=—Z£ 6’ s1n6? V= ZE 49 cos@ i=L12,..,n,
We have

2 ] 2
[ Zf 0 s1n6?j +(Z£j6"jcos¢9jJ , 1=12,..,n (4.3)
j=1

Consequently, we can express the total kinetic energy of the system, KE, as

KE = Zn:%m[vf

i=1

( Zl:é ) sm9J (Zf 0 cost, T

00, 6?9 sin @, sin 6, +ZZ€ ? 499 cosé. COS@J (4.4)

j=1 k=1 j=1 k=1

' mifjfké?jék cos(é?j -0, )

We may also find the total potential energy of the system by summing the gravitational potential
energies of each mass m. to get

PE = ngyl ZngE sind,. (4.5)

i=l j=1

Next, we define the Lagrangian function L, also called the Lagrangian, which is quantity that
characterizes the state of a physical system. The Lagrangian function is just the kinetic energy (energy of
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position) minus the potential energy (energy of position) i.e.,

L =KE- PE_—zzzm 00,06, c050,-0) -3 S mgt sind. (4.6)

i=l j=1 k=1 i=1 j=1
With these definitions, the Euler-Lagrange equations (or Lagrange’s equations) of motion for a
conservative system are given by

i{@L} o =7, q=12,.,n, (4.7)
di| o6, | o6,

Where T is the torque applied to the g*" link. The derivations for the Lagrangian and the Euler-Lagrange
equation may be found in [11].

Using (2.6), we have, forany g =1,2,...,n,

L. Z"jzm,equaj cos(d, —0,)

i=q j=1
—=—ZZm£ N (9(9 s1n(6q—9j)—2mig£q cos 6,
i=q j=l i=q

[ }ZZm, ,| 0, c0s(6,-6,)-6,(6,-6,)sin(6,-0,) |-

i=q j=1

Substituting these relations into (2.8), we get the equation of motion
,oda]
¢ dt| o6, | 06,

=>" > mt,0,][6,cos(6,-60,)-6,6,-6,)sin(8,-6))]

i=q j=1
+ZZmlﬁjﬂq919q sin(6, —Hj)—i-Zml.gﬁq cos 6,
i=q j=1 i=q
=>" > mt,0,]6,cos(0,-6,)-0,(6,-0,)sin(d, - 0,)+6,6,sin(6, - 0,)|
i=q j=1
+Zmig£q cos 6,

i=q
= Zn:imifij I:gq cos(6, —0,)+ 9‘? sin(6, — 491»)] +Zn: m.gl, cosf,,
i=q j=1 i—q

for g = 1,2,...,n. Thus, we get the following n nonlinear second-order system of ordinary differential
equations

ZZmE ) cos(Hq—é?j)+Zn:Zi:m,£]£qt9]2 51n(6?q—t9j)+zn:ml.gfq cosf, =7,. (4.8)
pefine

6, 01 91 T, ¢ g
o=|%1, 6% d=|% =] w0.0=|7] co=|*

o] o) la) - . .
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ay, 4y aqz o 4q,
a a a e A
1 Ap 23 2
M) = : . — e
anl an2 an3 T ann

where

a, = Z ml L cos(8,-6,), q.k=12,..,n,
i=min(k,q)
c, :ZZmiijqéf sin(0,-0), g=12,..,n,

i=q j=1
g, = Zmigﬁq coqu, q=12,...n.
i=q
Then a more compact formulation of (2.8) is given by
M(0)0+c(0,0)+G(0)=F, (4.9)

_ where Mis the n x nmass (or inertia) matrix, #'is the n x 1 trajectory vector (the generalized coordinates),
6 and @ are the first and second derivative of &, c(8, ) is the n x 1 Centrifugal/Coriolis force containing
velocity-dependent torques, G(&) is the n x 1 gravitational torque, and F contains the input joint torques.

Since the kinetic energy is positive, vanishing only when the generalized velocity equals zero, the inertia
matrix M(9) is also positive definite. Thus, the matrix M is invertible. Multiplying (2.9) from the left by M2,
we obtain the normal form of the dynamics equations

0= f(t0,0), (4.10a)
Where
1(t,0,0)=M"(0)F —M " (0)c(8,0)— M " (0)G(0). (4.10b)

A numerical scheme

In this subsection, we use the fourth-order Runge-Kutta (RK4) method to approximate the solution of
the following initial-value problem (IVP)

6=r10,0), te[0,T], (4.11a)

00)=a, 6(0)=p, (4.11b)
Where the initial conditions & =[a;,a,,....a,| and B=[B.p,....3,] are given.

To apply the RK4 method, we first convert the second-order system of equations into a first order
system of equations. To do this, we introduce the new variables

u =0, i=12,.,n,
w,. =0, i=12,.,n
Since 4, =6, =u,,, and 1., =6, = f,,i=1,2,..,n, we get the first-order system of equation

n+l

u=s(t,u), te[0,T], (4.12a)
u(0)=u', (4.12b)
where
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t
u:[ul,uz,...,unjum,...,uzn] ,
t
s:[sl,sz,...,sn,snﬂ,...,SZJ
t
=[5 Uyagseestgys Sy (U Uy g8y Uy ey )y o (U Uy U U st ]

t
M(O) :I:at:ﬁt}:[al’az""’an’ﬂl’ﬁz""’ﬂ”] '

Next, we use the fourth-order Runge-Kutta method [12] to approximate the solution u to the IVP (2.12).
We first discretize the computational interval [0, T] by non-overlapping intervals /.= (¢, ti),l =1,2,..,msuch
that0=t <t <---<t =T.Forsimplicity we assume that the partition is uniform. Let us define the length

of l.as h, =x; —x,, =— . Then for each / = 1,2,...,m we compute k, k,, k_, k, using

2’ "y

SHEEE

k1 =S(tiau(i))a
hoo ok
k2 =S(ti+5,u( ) +5k1),

h & h
k3 = s(tl.+5,u() +5k2),

k, =s(ti+%,u“) + hk,),
And finally the RK4 approximation of u™* at t__ is given by
u™ =y +%(kl +2k, +2k, +k,), i=12..,m,

For some arbitrary step-size h > 0. The initial condition is given by

t

U =yt stty, | =] 6,(0),6,(0)....,6,(0),6,(0).....6,(0) |

PID Controller

For the robot manipulator to reach target positions, we require the stabilization of its motion and the
ability to fix it at a particular position. In order to achieve this, we must implement a control method. Our
control method utilizes a computed torque technique based on our equations of motion to hold and move
each link of the n-link robot manipulator at an angle §, with respect to the x-axis, such that it may obtain
a specified position.

We utilize the proportional-integral-derivative (PID) control in this paper. The PID control is one of the
most effective and popular control systems. There are three parts to the control system: the Proportional
control (P), the Integral control (1), and the Derivative control (D). The PID control works through utilizing
a continuously calculated error value V= V. -V, . The Proportional, Integral, and Derivative controls may

now be expressed with constants K, K, K, as K.V, KIIVEdt, and K, Li{—V:, respectively.

In this paper, we define that setpoint as ﬂfand the process variable as ¥(t) such that our error function
e(t) is e(t) = 0f - J(t). The three components are each responsible for their own purposes in the overall
control. The Proportional control is the main drive in the system and acts proportional to the error value
V.. The Integral control is meant to account for residual error produced by the Proportional control over
time, integrating it to eliminate it. The Derivative control estimates future error values based on its rate

of change, reducing overshoot and ringing.

To formulate our PID control approach, we consider the dynamics of n-link robot manipulator described
by the nonlinear equation
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M(0)0+c(0,0)+G(0) =1, (5.1)
where M(9) = (mqk r<qken
an n x 1 Coriolis and centrifugal vector, G(9) = [g,, g,,...,gn]" is an n x 1 gravity vector of the manipulator,

U=1[3,9,.. 9] is the n x 1 vector representing joint angular positions, andt=[t,, T,, ..., T ]'isthenx 1

is an n x n symmetric positive definite inertia matrix, c(é, 9) =[c¢,,¢y,.¢, ] IS

vector of applied joint torques. The entries of M(3), c(, 9), and G(0) are, respectively,

my= Y. mll cos(,-6,), q.k=12,.n,

i=min(k,q)

Cq =szz€;£q0]2 Sin(eq _0]‘)5 C]=1,2,...,n,

i=q j=1

g, =Zml.gfq coqu, q=12,...,n.
i=q

Solving for @, we obtain
0 =-M"(0)[ c(0.0)+G(0) |+, (5.2)

Where 7 =M "(0)r =[7,,7,,....7, ]t . We define the position tracking error of the g™ joint as
e,()=0,-0,(1), (5.3)

Forall g = 1,2,...,n where qu denotes the g™ joint’s desired constant position and ﬂq is the actual joint
position.

A PID controller for the g joint is described by
A . t
2,()=K,e,(0)+K,e,(O)+K, jo e,(s)ds, (5.4)

Where K, , K, and K, are, respectively, the proportional, derivative, and integral gains of the g*

joint controller. The control problem is to provide a complete solution to the constant gain stabilizing
control parameters K, , K, and K, such that the position error eq(t) reduces to zero with time, i.e.,

}i_{geq(t) =0.
The input to the system (3.2) with the PID controlleris 7 = [fl,fz,...,fn ]t, where for eachg=1,2,...,n,
~ . t
2,()=K,e,()+K,e,(O)+K, jo e, (s)ds

=K, (6, ~0,)~K, 6,+K, [ (6, ~6,)ds. (5.5)

Where we used the fact that ¢, = —éq since qu is a constant denoting the desired target angle.
To implement the PID controller, we introduce new variables x, x,,..., x , as follows
t t
x,(t) = jo e,(s)ds =j0 @, —0,)ds, q=12,...n,
So that
x,(H)=e, ()= qu -0, q=12,..n
Thus, 7, (¢) can be written as
fq(t)zKEi (6’qf _eq)_Kanq-l_Kquq' (5.6)

With this notation, we rewrite (3.2) as
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0 =z(t,x,0,0), (5.7)
Where z(t,x,0,0) = =M (0)| c(0,0) + G(0) |+ £. We note that

fl Kpl(elf_al)_KDIél"'Kflxl

;= TA_Z - KPz(ezf_QZ)__KD202+K’2x2 =K, (0,-0)-K,0+K,x,
& |K,0,-0,)-K,0,+K,x,

Where
(K, 0 0 0 | 0, %

Kszo K, 0 (.),Hf—ezf,xzx.z,
0 0 0 K, | O, X,

where S stands for either P or D or /.

To numerically implement the PID controller, we convert the second-order system of differential

equations (3.7) into a first-order system of differential equations by introducing the following variables:
w=x, u, =60, u, =6, i=12..n

n+i

Differentiating them with respect to t, we get
U =X; = 91'f -0, :‘91'f Ui
U, =0, =y,

iy, =0 =z.(tu,uy,.uy,), i=1,2,..n,

where z, are the entries of zi.e., we used the notation z(t,x,0,0) = [21,25500002, ]t .

Define

u= [ul,...,un,uM,...,uZn,u2n+1,...,u3n]t.

Then we obtain

i=g(tu), u0)=u?, (5.8)
where

g= [6’1/, Uy s O, —uzn,u2n+l,...,u3n,zl(t,ul,uz,...,u3n),...,Zn(t,ul,uz,...,u3n)]t.

Finally, the fourth-order Runge-Kutta method can be used to approximate u and thus we deduce
approximations to the angles 3, the errors e, and the torques t. The fourth-order Runge-Kutta method
consists of generating a sequence {u"} as follows: Given the initial condition u(0) = u", where

1 =] 5,(0),%,(0).....x,,(0).6,(0).6,(0).....6,(0).6,(0).6,(0).....6,(0) ] ,

we generate u™Y forj0,1,...,m using
. o
u™ =y 4 g(kl +2k, + 2k, +k,),

where
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kl = g(tia”(i))a

hoo h
kz :g(ti +E,u()+5kl),

h 4 h
k=gt +—,u” +=k,)),
3 g(z 2 u 2 2)
k,=g(t +h,ut?” +hk,).

T
Here, i =— is the step size and t = jh for | =0,1,...,m.
m

Numerical Experiments

In this section, we present several numerical results to show the performance of the PID controller. We
consider n-link robot manipulators with n = 3,4,5,6. The case n = 2 is considered in [5].

Example 6.1. (simulation results for the three-link robot manipulator): In this example, we consider a
3-link robot manipulator. We take the following parameters:m, =m,=m_=1,/ =2,/ =1/,=1. We choose

the final position as 6, , = 2 0,, =0, 6,, =0. The initial conditions are take as follows

60 2| [6©@] [0] [xO] [0
6,00 [=|2, |6,00)[=|0], | x,0)|=|0]
6,0 |z |60 [0] [x©0] [0

We choose the following PID parameters
K, =K, =K, =30, K, =15 K, =K, =10, K, =K, =K, =20.

The initial and final positions of the robot manipulator are shown in Figure 2. Figure 3, Figure 4, and
Figure 5 demonstrate J(t), e(t) and t(t) over time interval [0,30] for i = 1,2,3.

Example 6.2. (simulation results for the three-link robot manipulator): In this example, we repeat the
previous example (Example 5.1) with the following values: m =m,=1,m,=3,/ =2,/,=4,1,=1. The final

position is (6’1f,6?2f,6’3f) = (%,%,Oj. The initial conditions are

60 [=] (6] [0] [xO7] [0
0,00 |=|s], |6,]=|0], [x©)|=]0].
6,0)] 15 |6] [0] [xO] [0
7%,
1.538 0053 N
1.575 ot i
1.584 [N ]
1.55 e e
1.530 .00 et
1.518 L8 23839
1'“5_3.3 3750 7.500 11250 1500 18750 27500 26250 ail.lm "'W;_u 3.750 7.500 11250 1500 18750 27500 26250 ig.un ‘3”?‘{m
Figure 3: 0 (t) (left), e (t)(middle), T (t) (right), t € [0, 30] for Example 6.1.
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B (1)

1571 0.540

it}

16,324
1.307 0.278 \'

4.1
1.043 w012

8100
0ire -0.252

3032
0515 -0.515

52524
n.252 -0.779 T
.Mz 143 e
-0.276 1.7 10,180
B e a750 7sm 11250 1500 16758 22500 znase 00 M) g a7s0 7sm 1iise is00 1e7sa 22500 76,358 !lmln AN 0w TG 11350 1500 16755 72500 850 o

t

Figure 4: 6,(t) (left), e (t)(middle), T,(t) (right), t € [0, 30] for Example 6.1.
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Figure 5: 6,(t) (left), e,(t)(middle), T,(t) (right), t € [0, 30] for Example 6.1.

7777

Figure 6: The initial position (left) and the final position (right) for Example 6.2.

The PID parameters are
K,=K, =K, =30, K, =15 K, =K, =10, K, =K, =K, =10.

The initial and final positions of the robot manipulator can be observed in Figure 6. To further illustrate
the dynamics, Figure 7, Figure 8, and Figure 9 provide insight into the variations of 9(t), e(t) and t(t) for i
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Figure 8: 6,(t) (left), e,(t)(middle), T,(t) (right), t € [0, 30] for Example 6.2.
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Figure 9: 6,(t) (left), e,(t)(middle), T,(t) (right), t € [0, 30] for Example 6.2.
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=1,2,3, spanning the time interval [0, 30] (initial 30 seconds).

Example 6.3. (simulation results for the three-link robot manipulator): We repeat the previous example

with the following values: m, =1, m,=m_ =2,1 =1,=1,= 1. The final positionis (,,,6,,,6;,) = (%,O,

The initial conditions are

1f>

o
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Figure 10: The initial position (left) and the final position (right) for Example 6.3.
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Figure 11: 6 (t) (left), e (t)(middle), T,(t) (right), t € [0, 30] for Example 6.3.
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Figure 12: 6,(t) (left), e (t)(middle), T,() (right), t € [0, 30] for Example 6.3.

60| [=] [6] [0] [xO] [0
0,0) =0, 16 |=|0], |x©)|=|0].
6,0)] 15 |6] 0] [xO] [0

The PID parameters are
KP1 =KP2 :KP3 =20, KDl =15, KD2 =KD3 =10, K,1 =K12 :K,3 =20.

Figure 10 displays the initial and final positions of the robot manipulator. Figure 11, Figure 12 and
Figure 13 illustrate the temporal variations of 9(t), e(t) and t(t) for i = 1,2,3, over the time interval [0, 30]
(during the first 39 seconds).
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Figure 13: 6,(t) (left), e,(t)(middle), T,(t) (right), t € [0, 30] for Example 6.3.
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Figure 14: The initial position (left) and the final position (right) for Example 6.4.

Example 6.4. (simulation results for the four-link robot manipulator). In this experiment, we consider a
4-link robot manipulator. We utilize the following values:m =4, m =3, m =2, m =1,/ =4,/ =3,/ =2,
. e V4 RY/4
I, = 1. The final position is (Hlf,é’zf,@f,@f):(5,0,0,7) .
The initial conditions are taken as follows

6071 1,1 [4] [0] [x©@] [o
0,0)| 2 6| [0 |x©] |0
6,0y |2 6] [0] |x©] |0f
0,00 Lol g, 0] [x©] |0

Our PID parameters are

K,=K,=K,=K, =30, K,=15, K, =K, =K, =10, K, =K, =20, K, =K, =10.

Figure 14 presents the initial and final positions of the robot manipulator. Additionally, Figure 15, Figure
16, Figure 17 and Figure 18 depict the temporal variations of §(t), e(t) and t(t) for i = 1,2,3,4, within the
time interval [0, 30] (during the initial 30 seconds).

Example 6.5. (Simulation results for the five-link robot manipulator): Here, we consider a 5-link robot
manipulator. We take m, =25, m,=20, m,=15m,=10,m =5,/ =5,/,=4,/,=3,/,=2,and /, = 5. The
Vd

final positionis (6,,.,6,,,6;,,0,,,6;,) = (%,O,Z,O,%} The initial conditions are
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Figure 15: 6 (t) (left), e (t)(middle), T (t) (right), t € [0, 30] for Example 6.4.

B,
1.5

11

0873

0640

0i7s

-0.058 :
-.'2'{'. 4750 7.500 41250 4500 48750 22500 26.250 H

0.058

175

Y

L.

0 3.750 7.500 11250 15.00 18.750 22.500 28.250 mt p -I544603

it}

~145.838

-545.847

845 455

345204

AT45.073

214488

853.778
253871 k

10 3760 7500 11950 15.00 18450 ZZ500 26.250 H:IM

Figure 16: 6,(t) (left), e (t)(middle), T,(¢) (right), t € [0, 30] for Example 6.4.
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Figure 17: 6,(t) (left), e(t)(middle), T,(t) (right), t € [0, 30] for Example 6.4.
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Figure 18: 6,(t) (left), e, (t)(middle), ,(t) (right), t € [0, 30] for Example 6.4.

Figure 19: The initial position (left) and the final position (right) for Example 6.5.
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Figure 20: 6 (t) (left), e (t)(middle), T (t) (right), t € [0, 30] for Example 6.5.
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For this experiment, we choose the following PID parameters K, =K, =K, =K, =K, =30,
K, =15 K, =K, =10, K, =K, =5, K, =K, =20, K, =K, =10, and K, =5. The initial and final

positions of the robot manipulator are shown in Figure 19, Figure 20, Figure 21, Figure 22, Figure 23,
and Figure 24 illustrate the variations of 9(t), e(t) and t(t) fori=1,2,...,5, across the time interval [0, 30]
(during the first 30 seconds).

Example 6.6. (Simulation results for the six-link robot manipulator): In this final experiment, we
consider a 6-link robot manipulator. For this test we utilize the following values:m =6, m,=5,m, =4, m
=3,m,=2,m_=1,1=6,1,=5,1,=4,1,=3,1,=2,and /_= 1. The target position is
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Figure 21: 6,(t) (left), e (t)(middle), T,(t) (right), t € [0, 30] for Example 6.5.
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Figure 22: 6,(t) (left), e(t)(middle), T,(t) (right), t € [0, 30] for Example 6.5.
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Figure 23: 6,(t) (left), e, (t)(middle), T,(t) (right), t € [0, 30] for Example 6.5.
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Figure 24: 6(t) (left), e (t)(middle), T.(t) (right), t € [0, 30] for Example 6.5.
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Figure 25: The initial position (left) and the final position (right) for Example 6.6.
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The initial conditions are

0.0 |21 [61] [o] [x@©] [0]
6,000 |Z| |6,| |0 x(0)] |0
6,00)| |z 6, [0 x(0)] |0
0,00 |z |6,| [0 |xO]| |0
0,0)| |z 0. |0 x(0)| [0
6O = [6] [0] [x©O] [0]

The PID parameters are KP1 =KP2 =KP3 =KP4 =KP5 :KP6 =30,
KD1 =15, KD2 :KD3 :KD4 :KD5 :KD6 =10, K,1 :K12 =20, K,3 :K,4 :KIS :K,6 =10. The initial and

final positions of the robot manipulator are resented in Figure 25. Figure 26, Figure 27, Figure 28, Figure
29, Figure 30, and Figure 31 illustrate the behaviours of 9(t), e(t) and t(t) fori=1,2,...,6 over the time
interv30] (initial 30 seconds).
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Figure 26: 6 (t) (left), e (t)(middle), T,(t) (right), t € [0, 30] for Example 6.6.
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Figure 27: 6,(t) (left), e (t)(middle), T,() (right), t € [0, 30] for Example 6.6.
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Figure 28: 6,(t) (left), e,(t)(middle), T,(t) (right), t € [0, 30] for Example 6.6.
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Figure 29: 6 (t) (left), e,(t)(middle), T,(t) (right), t € [0, 30] for Example 6.6.
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Figure 30: 6(t) (left), e (t)(middle), T.(t) (right), t € [0, 30] for Example 6.6.

Conclusion motion to achieve target positions from given initial
conditions. We first derived the system’s equations
of motion using the Lagrangian formulation.
Subsequently, the PID is implemented, and
the resulting second-order system of ordinary

In this paper, we introduced a Proportional-
Integral-Derivative (PID) control approach for an
n-link robot manipulator, aimed at guiding its
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Figure 31: 6 (t) (left), e (t)(middle), T (¢) (right), t € [0, 30] for Example 6.6.

differential equations is approximated using the
classical fourth-order Runge-Kutta method for
systems. The efficiency of the control strategy
is demonstrated through a series of numerical
experiments, involving the simulation of the
manipulator’s motion from an initial position to a
desired target position. This paper focuses on the
n-link robot manipulator in two-dimensional space.
The PID controller introduced in this paper can be
extended to accommodate robots with prismatic
joints. In the future, we are planning to extend our
approach to the n-link robot manipulator in three-
dimensional space, where we will consider other
typical joint types, including revolute (the attached
links rotate about a common axis), prismatic (the
attached links translate about a common axis) and
spherical (the attached links rotate about a point).
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