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Abstract

This paper aims to model and guide the motion of an n-link revolute robot arm manipulator by 
implementing an efficient proportional-integral-derivative (PID) control strategy. The n-link robot arm 
manipulator we examine shares similarities with a pendulum system comprising n arms and n masses. 
This system features a stationary point around which n distinct links, each carrying a mass at its end, 
are interconnected. We first derive the equations of motion using Lagrangian formulation. We then 
implement a PID controller for the robot manipulator, enabling it to attain designated target positions 
as required. These equations are represented by a second-order system of nonlinear ordinary 
differential equations. Due to the absence of closed-form solutions for the equations of motion, we 
employ the classical fourth-order Runge-Kutta method to approximate the solution of the initial-value 
problem. Due to the inherent nonlinear nature, achieving precise control over the motion of the n-link 
robot manipulator at user-defined positions poses a challenging endeavor. In light of this, our primary 
emphasis centers on controlling the robot manipulator to attain the desired position using the PID 
controller. Numerous computer simulations are conducted to validate the controller’s performance. 
Notably, a PID controller is presented as part of the simulations, illustrating how we can achieve 
balance for the n links with n = 3 − 6 on a moving robot at various angles.
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to enhancing human livelihoods, enabling their 
endeavors and innovations, ultimately leading 
to improved quality of life. An overview of 
commercially available robotic manipulators, 
sensors, and controllers can be found in [1]. The field 
of robotic manipulator control is a well-established 
and promising domain that encompasses research, 
development, and manufacturing. Industrial robots 

Introduction
The purpose of this paper is to design a 

nonlinear proportional-integral-derivative (PID) 
controller for trajectory tracking of a manipulator 
robot. Robotic arms play an essential role in various 
sectors, including manufacturing, transportation, 
and healthcare. They contribute significantly 
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primarily function as positioning and handling devices. Hence, a valuable robot possesses the capability 
to control its motion along with the interactive forces and torques occurring between the robot and its 
surroundings.

Robot Manipulators are composed of links connected by joints into a kinematic chain. These joints 
predominantly consist of rotary components capable of achieving a diverse range of motions, thereby 
imparting flexibility and maneuvering capabilities to the robot. The n-link robot arm manipulator closely 
resembles an n-pendulum system with n arms and n masses, where there exists a fixed point about 
which n different links with a mass at the end of each are connected upon. Each adjacent mass and link 
combination forms its own simple pendulum such that the system contains n total simple pendulums, 
each conjoined with one another to form an n-pendulum system. When released from an arbitrary 
position without control, each pendulum is able to freely oscillate on the xy-plane. While the system itself 
is simple dynamically, the behavior exhibited by it is complex and nonlinear. In order to understand this 
behavior and define the motion of the system, we design a nonlinear PID controller for trajectory tracking 
of a manipulator robot.

Achieving precision and speed in the movements of a robot manipulator is critical in its efficiency. In 
this paper, we propose a proportional-integral-derivative (PID) control to achieve this. To define clearly 
designated parameters and to track the position of the system within those parameters we use a PID 
controller. The PID controller has three parts: a proportional (P) controller, an integral (I) controller, and a 
derivative (D) controller. This allows for the optimization of speed, stability, and precision. Subsequently, 
PID controllers are known to be reliable and efficient, considered a building block in industrial technology 
and the standard control in industrial robotics as well as research [2].

Other control systems have been examined as well for the n-link manipulator. An overview of various 
control theory concepts that are used in the control of robots can be found in [1]. In [3], the authors 
presented a numerical solution of the second-order robot arm control problem using the Runge-Kutta-
Butcher algorithm. Research has also formulated using sets of stabilizing decentralized PID controls with 
Kharitonov’s theorem for n-link manipulators to track positions and was successfully simulated on a 
two-link manipulator [4]. Recently, in [5], we designed a robust, fast, and practical PID controller for 
the classical double pendulum system. We first derived the equations of motion for the two-link robot 
manipulator using the Lagrangian approach. We used the classical fourth-order Runge-Kutta method to 
approximate the solution of the nonlinear system of second-order ordinary differential equations. We 
focused mainly on control of the robot manipulator to get the desired position using the PID control 
approach. In this paper, we extend the approach to an n-link robot manipulator for any n. More recently, 
an Adaptive Observer Based Neural Control for flexible-joint manipulators has been researched, utilizing 
the backstepping method with Lyapunov stability theory [6]. A Sliding Mode Control employed with the 
super-twisting method has also been successfully applied to robot manipulators, demonstrating fast error 
convergence and angular velocity approximation for each link [7]. Others have used the Lyapunov-based 
Control Scheme for linear n-link manipulators mounted on mobile sliders to navigate links [8].

In this paper, we propose a PID control for an n-link robot manipulator to guide its motion from an initial 
position to a target position on a plane in Figure 1. We first derive the total potential and kinetic energies 
for the n-link system. Then, we explicitly find the so-called Lagrangian. The Euler-Lagrangian equation 
[9] is then used to define the torques for each link. Our proposed PID controller uses the classical fourth 
order Runge-Kutta method [10] to approximate the angles and torques of the links relative to the x-axis 
from a system of nonlinear differential equations and initial conditions. The numerical approximations 
are performed by Java code. The system of differential equations our method relies on is based on the 
equations of motion for the n-link robot manipulator. These equations of motion are derived through 
Lagrangian dynamics, specifically from the Euler-Lagrange equation that is based on the total kinetic and 
potential energies of the n-link robot manipulator system. Through this control derivation, we are able 
to obtain the most precise and efficient guidance of the manipulator’s motion to its designated target 
positions. This is demonstrated through subsequent simulations of the control that we perform.
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The paper is organized as follows. Section 2 presents the derivation of the equations of motion for 
the n-link robotic manipulator using the Lagrangian approach. Furthermore, the procedure for obtaining 
numerical solutions using the classical fourth-order Runge-Kutta method is detailed. The design of the 
PID controller for the n-pendulum system is expounded upon in Section 3. Section 4 provides a series of 
numerical examples intended to evaluate the performance of the PID controller. Concluding remarks are 
offered in Section 5.

Dynamics Equations
The robot manipulator is a device composed of multiple conjoined arms, joints, and links integrated 

with a control mechanism designed to manipulate objects and perform physical tasks without manual 
human intervention. Robot manipulators are consequently vital to the world of industry and everyday life 
in assembly, automation, manufacturing, logistics, and more.

A typical application involving an industrial manipulator with n revolute links is shown in Figure 2. This 
robot can be viewed as a pendulum made of n masses m1, m2, . . . , mn and n rods of lengths ℓ1, ℓ1, . . . , ℓn.

Figure 1: n-Link planar robot manipulator

Figure 2: The initial position (left) and the final position (right) for Example 6.1.
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For our model problem, we consider a Cartesian coordinate system with origin placed at the base of 
the robot.

The equations of motion
We may understand the n-link robot manipulator as an n-link pendulum system on a two-dimensional 

plane. This system consists of n weightless bars, having lengths of ℓ1, ℓ2, . . . , ℓn. There exists a mass at the 
end of each bar such that there are n masses in total connected by the bars. Denote these n masses as m1, 
m2, . . . , mn. Each bar may rotate freely, where the first bar rotates about the origin and each subsequent 
bar rotates about the endpoint of its preceding bar, producing n degrees of freedom. The angles for each 
of these degrees of freedom produced by the bar relative to the x-axis may be denoted as θ1, θ1, . . . , 
θn. Such a system exhibits chaotic motion that may be studied through Lagrangian dynamics. In order to 
derive the equations of motion through Lagrangian dynamics, we must first solve for the kinetic energy 
and the potential energy of the system.

Let (xi, yi) denote the position of the mass mi for each i = 1,2,…,n. The position (xi, yi) of mi at time t is 
given by the equations:

1 1
cos , sin , 1, 2,..., .

i i

i j j i j j
j j

x y i nθ θ
= =

= = =∑ ∑                            (4.1)

The velocity of mass mi, denoted as vi is given by
2 2 , 1, 2,..., ,i i iv x y i n= + =                       (4.2)

where ix  and iy  are, respectively, the derivative of xi and yi with respect to t. Since 

1 1
sin , cos , 1, 2,..., ,

i i

i j j j i j j j
j j

x y i nθ θ θ θ
= =

= − = =∑ ∑   

We have
2 2

1 1
sin cos , 1,2,..., .

i i

i j j j j j j
j j

v i nθ θ θ θ
= =

   
= − + =   

   
∑ ∑               (4.3)

Consequently, we can express the total kinetic energy of the system, KE, as

( )

2

1

2 2

1 1 1

1 1 1 1 1

1 1

1
2

1 sin cos
2

1 sin sin cos cos
2

1 sin sin cos cos
2

n

i i
i

n i i

i j j j j j j
i j j

n i i i i

i j k j k j k j k j k j k
i j k j k

i

i j k j k j k j k
j k

KE m v

m

m

m

θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

=

= = =

= = = = =

= =

=

    
 = − +        
 

= + 
 

= +

∑

∑ ∑ ∑

∑ ∑∑ ∑∑

∑

  

      

  

( )
1

1 1 1

1 cos .
2

n i

i

n i i

i j k j k j k
i j k

m θ θ θ θ

=

= = =

= −

∑∑

∑∑∑   

             (4.4)

We may also find the total potential energy of the system by summing the gravitational potential 
energies of each mass mi to get

1 1 1
sin .

n n i

i i i j j
i i j

PE m gy m g θ
= = =

= =∑ ∑∑                 (4.5)

Next, we define the Lagrangian function L , also called the Lagrangian, which is quantity that 
characterizes the state of a physical system. The Lagrangian function is just the kinetic energy (energy of 
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position) minus the potential energy (energy of position) i.e.,

1 1 1 1 1

1 cos( ) sin .
2

n i i n i

i j k j k j k i j j
i j k i j

KE PE m m gθ θ θ θ θ
= = = = =

= − = − −∑∑∑ ∑∑   L             (4.6)

With these definitions, the Euler-Lagrange equations (or Lagrange’s equations) of motion for a 
conservative system are given by

, 1, 2,..., ,q
q q

d q n
dt

τ
θ θ

 ∂ ∂
− = = 

∂ ∂  

L L                 (4.7)

Where τq is the torque applied to the qth link. The derivations for the Lagrangian and the Euler-Lagrange 
equation may be found in [11].

Using (2.6), we have, for any q = 1,2,…,n,

1

1

1

cos( )

sin( ) cos

cos( ) ( )sin( ) .

n i

i j q j q j
i q jq

n i n

i j q j q q j i q q
i q j i qq

n i

i j q j q j j q j q j
i q jq

m

m m g

d m
dt

θ θ θ
θ

θ θ θ θ θ
θ

θ θ θ θ θ θ θ θ
θ

= =

= = =

= =

∂
= −

∂

∂
= − − −

∂

 ∂  = − − − −   ∂  

∑∑

∑∑ ∑

∑∑

 

   

    

L

L

L

Substituting these relations into (2.8), we get the equation of motion

1

1

cos( ) ( )sin( )

sin( ) cos

cos( ) ( )sin( ) sin( )

q
q q

n i

i j q j q j j q j q j
i q j

n i n

i j q j q q j i q q
i q j i q

i j q q q j j q j q j j q q j
j
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m

m m g

m

τ
θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

= =

= = =

=
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= − 
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 = − − − − 

+ − +

 = − − − − + − 

∑∑
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L L

1

2

1

cos

cos( ) sin( ) cos ,

n i

i q

n

i q q
i q

n i n

i j q q q j j q j i q q
i q j i q

m g

m m g

θ

θ θ θ θ θ θ θ

=

=

= = =

+

 = − + − + 

∑∑

∑
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for q = 1,2,…,n. Thus, we get the following n nonlinear second-order system of ordinary differential 
equations

2

1 1
cos( ) sin( ) cos .

n i n i n

i j q j q j i j q j q j i q q q
i q j i q j i q

m m m gθ θ θ θ θ θ θ τ
= = = = =

− + − + =∑∑ ∑∑ ∑                 (4.8)

Define

1 1 1 11 1

2 2 2 22 2, , , , ( , ) , ( ) ,

n n n nn n

c g
c g

F c G

c g

θ τθ θ
θ τθ θ

θ θ θ θ θ θ

θ τθ θ

          
          
          = = = = = =
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11 12 13 1
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1 2 3

( ) ,

n

n

n n n nn

a a a a
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where

min( , )

2

1

cos( ), , 1, 2,..., ,

sin( ), 1, 2,..., ,

cos , 1, 2,..., .

n

qk i k q q k
i k q

n i

q i j q j q j
i q j

n

q i q q
i q

a m q k n

c m q n

g m g q n

θ θ

θ θ θ

θ

=

= =

=

= − =

= − =

= =

∑

∑∑

∑

 

 



Then a more compact formulation of (2.8) is given by

( ) ( , ) ( ) ,M c G Fθ θ θ θ θ+ + =                  (4.9)

where M is the n × n mass (or inertia) matrix, θ is the n × 1 trajectory vector (the generalized coordinates), 
θ  and θ  are the first and second derivative of θ, c(θ, θ ) is the n × 1 Centrifugal/Coriolis force containing 
velocity-dependent torques, G(θ ) is the n × 1 gravitational torque, and F contains the input joint torques.

Since the kinetic energy is positive, vanishing only when the generalized velocity equals zero, the inertia 
matrix M(θ) is also positive definite. Thus, the matrix M is invertible. Multiplying (2.9) from the left by M−1, 
we obtain the normal form of the dynamics equations

( , , ),f tθ θ θ=                  (4.10a)

Where
1 1 1( , , ) ( ) ( ) ( , ) ( ) ( ).f t M F M c M Gθ θ θ θ θ θ θ θ− − −= − −             (4.10b)

A numerical scheme
In this subsection, we use the fourth-order Runge-Kutta (RK4) method to approximate the solution of 

the following initial-value problem (IVP)

[ ]( , , ), 0, ,f t t Tθ θ θ= ∈                (4.11a)

(0) , (0) ,θ α θ β= =                           (4.11b)

Where the initial conditions [ ]1 2, ,..., t
nα α α α=  and [ ]1 2, ,..., t

nβ β β β=  are given.

To apply the RK4 method, we first convert the second-order system of equations into a first order 
system of equations. To do this, we introduce the new variables

, 1, 2,..., ,

, 1, 2,..., .
i i

n i i

u i n

u i n

θ

θ+

= =

= =

Since 1i i nu uθ += =  and n i i iu fθ+ = = , i = 1,2,…,n, we get the first-order system of equation

[ ]( , ), 0, ,u s t u t T= ∈               (4.12a)

(0)(0) ,u u=                               (4.12b)

where
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[ ]
[ ]

1 2 , 1 2

1 2 , 1 2

1 2 2 1 1 2 1 2 1 2 1 2

(0)
1 2 1 2

, ,..., ,..., ,

, ,..., ,...,

, ,..., , ( , , ,..., , ,... ),..., ( , , ,..., , ,..., ) ,

, , ,..., , , ,..., .

t
n n n

t
n n n

t
n n n n n n n n n n

tt t
n n

u u u u u u

s s s s s s

u u u f t u u u u u f t u u u u u

u α β α α α β β β

+

+

+ + + +

 =  

 =  

=

 = = 

Next, we use the fourth-order Runge-Kutta method [12] to approximate the solution u to the IVP (2.12). 
We first discretize the computational interval [0, T] by non-overlapping intervals Ii = (ti-1, ti), I = 1,2,…,m such 
that 0 = t0 < t1 < ∙ ∙ ∙ < tm = T. For simplicity we assume that the partition is uniform. Let us define the length 

of Ii as 1i i i
Th x x
m−= − = . Then for each I = 1,2,…,m we compute k1, k2, k3, k4 using

( )
1

( )
2 1

( )
3 2

( )
4 3

( , ),

( , ),
2 2

( , ),
2 2

( , ),
2

i
i

i
i

i
i

i
i

k s t u
h hk s t u k

h hk s t u k

hk s t u hk

=

= + +

= + +

= + +

And finally the RK4 approximation of ui+1 at ti+1 is given by

( 1) ( )
1 2 3 4( 2 2 ), 1.2...., ,

6
i i hu u k k k k i m+ = + + + + =

For some arbitrary step-size h > 0. The initial condition is given by

[ ](0)
1 2 1 2 1 2 1, ,..., , ,..., (0), (0),..., (0), (0),..., (0) .

tt
n n n n nu u u u u u θ θ θ θ θ+  = =  

 

PID Controller
For the robot manipulator to reach target positions, we require the stabilization of its motion and the 

ability to fix it at a particular position. In order to achieve this, we must implement a control method. Our 
control method utilizes a computed torque technique based on our equations of motion to hold and move 
each link of the n-link robot manipulator at an angle θi with respect to the x-axis, such that it may obtain 
a specified position.

We utilize the proportional-integral-derivative (PID) control in this paper. The PID control is one of the 
most effective and popular control systems. There are three parts to the control system: the Proportional 
control (P), the Integral control (I), and the Derivative control (D). The PID control works through utilizing 
a continuously calculated error value VE = VSP −VPV. The Proportional, Integral, and Derivative controls may 

now be expressed with constants KP, KI, KD, as KPVE, I EK V dt∫ , and E
D

dVK
dt

, respectively.

In this paper, we define that setpoint as θf and the process variable as θ(t) such that our error function 
e(t) is e(t) = θf − θ(t). The three components are each responsible for their own purposes in the overall 
control. The Proportional control is the main drive in the system and acts proportional to the error value 
VE. The Integral control is meant to account for residual error produced by the Proportional control over 
time, integrating it to eliminate it. The Derivative control estimates future error values based on its rate 
of change, reducing overshoot and ringing.

To formulate our PID control approach, we consider the dynamics of n-link robot manipulator described 
by the nonlinear equation
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( ) ( , ) ( ) ,M c Gθ θ θ θ θ τ+ + =                      (5.1)

where M(θ) = (mqk)1≤q,k≤n is an n × n symmetric positive definite inertia matrix, 1 2( , ) [ , ,..., ]t
nc c c cθ θ =  is 

an n × 1 Coriolis and centrifugal vector, G(θ) = [g1, g2,…,gn]t is an n × 1 gravity vector of the manipulator, 
θ = [θ1, θ2,…, θn]

t is the n × 1 vector representing joint angular positions, and τ = [τ1, τ2, …, τn]
t is the n × 1 

vector of applied joint torques. The entries of M(θ), ( , )c θ θ , and G(θ) are, respectively,

min( , )

2

1

cos( ), , 1, 2,..., ,

sin( ), 1, 2,..., ,

cos , 1, 2,..., .

n

qk i k q q k
i k q

n i

q i j q j q j
i q j

n

q i q q
i q

m m q k n

c m q n

g m g q n

θ θ

θ θ θ

θ

=

= =

=

= − =

= − =

= =

∑

∑∑

∑

 

 



Solving for θ , we obtain
1 ˆ( ) ( , ) ( ) ,M c Gθ θ θ θ θ τ−  = − + + 

                   (5.2)

Where [ ]1
1 2ˆ ˆ ˆ ˆ( ) , ,..., t

nMτ θ τ τ τ τ−= = . We define the position tracking error of the qth joint as

( ) ( ),q qf qe t tθ θ= −                    (5.3)

For all q = 1,2,…,n where 
fqθ  denotes the qth joint’s desired constant position and θq is the actual joint 

position.

A PID controller for the qth joint is described by

0
ˆ ( ) ( ) ( ) ( ) ,

q q q

t

q P q D q I qt K e t K e t K e s dsτ = + + ∫                (5.4)

Where 
qPK , 

qDK  and 
qIK  are, respectively, the proportional, derivative, and integral gains of the qth 

joint controller. The control problem is to provide a complete solution to the constant gain stabilizing 
control parameters 

qPK , 
qDK  and 

qIK  such that the position error eq(t) reduces to zero with time, i.e., 
lim ( ) 0qt

e t
→∞

= .

The input to the system (3.2) with the PID controller is [ ]1 2ˆ ˆ ˆ ˆ, ,..., t
nτ τ τ τ= , where for each q = 1,2,...,n,

0

0

ˆ ( ) ( ) ( ) ( )

( ) ( ) ,

q q q

q q q f

t

q P q D q I q

t

P qf q D q I q q

t K e t K e t K e s ds

K K K ds

τ

θ θ θ θ θ

= + +

= − − + −

∫
∫



                  (5.5)

Where we used the fact that q qe θ= −   since 
fqθ  is a constant denoting the desired target angle.

To implement the PID controller, we introduce new variables x1, x2,…, xn, as follows

0 0
( ) ( ) ( ) , 1, 2,..., ,

t t

q q qf qx t e s ds ds q nθ θ= = − =∫ ∫
So that 

( ) ( ) , 1, 2,..., .
fq q q qx t e t q nθ θ= = − =

Thus, ˆ ( )q tτ  can be written as 

ˆ ( ) ( ) .
q f q q qq P q q D q I xt K K Kτ θ θ θ= − − +                (5.6)

With this notation, we rewrite (3.2) as
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( , , , ),z t xθ θ θ=                    (5.7)

Where 1 ˆ( , , , ) ( ) ( , ) ( ) .z t x M c Gθ θ θ θ θ θ τ−  = − + + 
   We note that

1 1 1

2 2 2

1 1 1 11

2 2 2 22

2

( )ˆ
ˆ ( )

ˆ ( ) ,

ˆ ( )
n n n

P f D I

P f D I
P f D I

n P nf n D n I n

K K K x

K K K x
K K K x

K K K x

θ θ θτ
θ θ θτ

τ θ θ θ

τ θ θ θ

 − − + 
   − − +  = = = − − +  
  
 − − +   






 


Where 

1

2

1 1

2 2

0 0 0

0 0 0
, , ,

0 0 0
n

s f

s f
s f

nf ns

K x
K x

K x

xK

θ
θ

θ

θ

     
     
     = = =     
     
       





     



where S stands for either P or D or I.

To numerically implement the PID controller, we convert the second-order system of differential 
equations (3.7) into a first-order system of differential equations by introducing the following variables:

2, , , 1, 2,..., .i i n i i n i iu x u u i nθ θ+ += = = =

Differentiating them with respect to t, we get 

2

2 1 2 3

,

,

( , , ,..., ), 1, 2,..., ,

i i if i if n i

n i i n i

n i i i n

u x u

u u

u z t u u u i n

θ θ θ

θ

θ

+

+ +

+

= = − = −

= =

= = =

 





where zi are the entries of z i.e., we used the notation [ ]1 2( , , , ) , ,..., t
nz t x z z zθ θ = .

Define

[ ]1 1 2 2 1 3,..., , ,..., , ,..., t
n n n n nu u u u u u u+ += .

Then we obtain 
(0)( , ), (0) ,u g t u u u= =                   (5.8)

where

1 1 2 2 1 3 1 1 2 3 1 2 3,..., , ,..., , ( , , ,..., ),..., ( , , ,..., ) .
t

f n nf n n n n n ng u u u u z t u u u z t u u uθ θ+ + = − − 
Finally, the fourth-order Runge-Kutta method can be used to approximate u and thus we deduce 

approximations to the angles θi, the errors ei, and the torques τi. The fourth-order Runge-Kutta method 
consists of generating a sequence {u(i)} as follows: Given the initial condition u(0) = u(0), where

(0)
1 2 1 2 1 2(0), (0),..., (0), (0), (0),..., (0), (0), (0),..., (0) ,

t

n n nu x x x θ θ θ θ θ θ =  
  

we generate u(i+1) for i 0,1,…,m using

( 1) ( )
1 2 3 4( 2 2 ),

6
i i hu u k k k k+ = + + + +

where
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( )
1

( )
2 1

( )
3 2

( )
4 3

( , ),

( , ),
2 2

( , ),
2 2

( , ).

i
i

i
i

i
i

i
i

k g t u
h hk g t u k

h hk g t u k

k g t h u hk

=

= + +

= + +

= + +

Here, Th
m

=  is the step size and ti = ih for I = 0,1,…,m.

Numerical Experiments
In this section, we present several numerical results to show the performance of the PID controller. We 

consider n-link robot manipulators with n = 3,4,5,6. The case n = 2 is considered in [5].

Example 6.1. (simulation results for the three-link robot manipulator): In this example, we consider a 
3-link robot manipulator. We take the following parameters: m1 = m2 = m3 = 1, l1 = 2, l2 = l3 = 1. We choose 

the final position as 1 2 3, 0, 0.
2f f f
πθ θ θ= = =  The initial conditions are take as follows

1 1 12

2 2 22

3 3 32

(0) (0) 0 (0) 0
(0) , (0) 0 , (0) 0 .
(0) (0) 0 (0) 0

x
x
x

π

π

π

θ θ
θ θ
θ θ

 
 
 
 
 
 
 
  

        
        = = =        
                







We choose the following PID parameters

1 2 3 1 2 3 1 2 3
30, 15, 10, 20.P P P D D D I I IK K K K K K K K K= = = = = = = = =

The initial and final positions of the robot manipulator are shown in Figure 2. Figure 3, Figure 4, and 
Figure 5 demonstrate θi(t), ei(t) and τi(t) over time interval [0,30] for i = 1,2,3.

Example 6.2. (simulation results for the three-link robot manipulator): In this example, we repeat the 
previous example (Example 5.1) with the following values: m1 = m2 = 1, m3 = 3, l1 = 2, l2 = 4, l3 = 1. The final 

position is 1 2 3( , , ) , ,0 .
2 2f f f
π πθ θ θ  =  

 
 The initial conditions are

1 1 1
2
02 2 2

23 3 3

(0) 0 (0) 0
(0) , 0 , (0) 0 .
(0) 0 (0) 0

x
x
x

π

π

θ θ
θ θ
θ θ

 
 
 
 
 
 
  

        
        = = =        
                







Figure 3: θ1(t) (left), e1(t)(middle), τ1(t) (right), t ∈ [0, 30] for Example 6.1.
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Figure 5: θ3(t) (left), e3(t)(middle), τ3(t) (right), t ∈ [0, 30] for Example 6.1.

Figure 6: The initial position (left) and the final position (right) for Example 6.2.

Figure 4: θ2(t) (left), e2(t)(middle), τ2(t) (right), t ∈ [0, 30] for Example 6.1.

The PID parameters are

1 2 3 1 2 3 1 2 3
30, 15, 10, 10.P P P D D D I I IK K K K K K K K K= = = = = = = = =

The initial and final positions of the robot manipulator can be observed in Figure 6. To further illustrate 
the dynamics, Figure 7, Figure 8, and Figure 9 provide insight into the variations of θi(t), ei(t) and τi(t) for i 
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Figure 7: θ1(t) (left), e1(t)(middle), τ1(t) (right), t ∈ [0, 30] for Example 6.2.

Figure 9: θ3(t) (left), e3(t)(middle), τ3(t) (right), t ∈ [0, 30] for Example 6.2.

Figure 8: θ2(t) (left), e2(t)(middle), τ2(t) (right), t ∈ [0, 30] for Example 6.2.

= 1,2,3, spanning the time interval [0, 30] (initial 30 seconds).

Example 6.3. (simulation results for the three-link robot manipulator): We repeat the previous example 

with the following values: m1 = 1, m2 = m3 = 2, l1 = l2 = l3 = 1. The final position is 1 2 3( , , ) ,0, .
3 4f f f
π πθ θ θ  =  

 
 

The initial conditions are
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Figure 10: The initial position (left) and the final position (right) for Example 6.3.

1 1 1
6
02 2 2

53 3 3

(0) 0 (0) 0
(0) , 0 , (0) 0 .
(0) 0 (0) 0

x
x
x

π

π

θ θ
θ θ
θ θ

 
 
 
 
 
 
  

        
        = = =        
                







The PID parameters are

1 2 3 1 2 3 1 2 3
20, 15, 10, 20.P P P D D D I I IK K K K K K K K K= = = = = = = = =

Figure 10 displays the initial and final positions of the robot manipulator. Figure 11, Figure 12 and 
Figure 13 illustrate the temporal variations of θi(t), ei(t) and τi(t) for i = 1,2,3, over the time interval [0, 30] 
(during the first 39 seconds).

Figure 11: θ1(t) (left), e1(t)(middle), τ1(t) (right), t ∈ [0, 30] for Example 6.3.

Figure 12: θ2(t) (left), e2(t)(middle), τ2(t) (right), t ∈ [0, 30] for Example 6.3.
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Example 6.4. (simulation results for the four-link robot manipulator). In this experiment, we consider a 
4-link robot manipulator. We utilize the following values: m1 = 4, m2 = 3, m3 = 2, m4 = 1, l1 = 4, l2 = 3, l3 = 2, 

l4 = 1. The final position is ( )1 2 3 4
3, , , ,0,0,

2 2f f f f
π πθ θ θ θ  =  

 
 .

The initial conditions are taken as follows

1 11
2

2 22
2

3 330
0

4 44

(0) (0)0 0
(0) (0)0 0

, , .
(0) (0)0 0
(0) (0)0 0

x
x
x
x

π

π

θ θ
θ θ
θ θ
θ θ

 
 
 
 
 
 
 
 
 

       
       
       = = =
       
       
         









Our PID parameters are

1 2 3 4 1 2 3 4 1 2 3 4
30, 15, 10, 20, 10.P P P P D D D D I I I IK K K K K K K K K K K K= = = = = = = = = = = =

Figure 14 presents the initial and final positions of the robot manipulator. Additionally, Figure 15, Figure 
16, Figure 17 and Figure 18 depict the temporal variations of θi(t), ei(t) and τi(t) for i = 1,2,3,4, within the 
time interval [0, 30] (during the initial 30 seconds).

Example 6.5. (Simulation results for the five-link robot manipulator): Here, we consider a 5-link robot 
manipulator. We take m1 = 25, m2 = 20, m3 = 15, m4 = 10, m5 = 5, l1 = 5, l2 = 4, l3 = 3, l4 = 2, and l4 = 5. The 

final position is 1 2 3 4 5( , , , , ) ,0, ,0, .
4 4 4f f f f f
π π πθ θ θ θ θ  =  

 
 The initial conditions are

Figure 13: θ3(t) (left), e3(t)(middle), τ3(t) (right), t ∈ [0, 30] for Example 6.3.

Figure 14: The initial position (left) and the final position (right) for Example 6.4.
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Figure 15: θ1(t) (left), e1(t)(middle), τ1(t) (right), t ∈ [0, 30] for Example 6.4.

Figure 17: θ3(t) (left), e3(t)(middle), τ3(t) (right), t ∈ [0, 30] for Example 6.4.

Figure 16: θ2(t) (left), e2(t)(middle), τ2(t) (right), t ∈ [0, 30] for Example 6.4.
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Figure 18: θ4(t) (left), e4(t)(middle), τ4(t) (right), t ∈ [0, 30] for Example 6.4.

Figure 19: The initial position (left) and the final position (right) for Example 6.5.

Figure 20: θ1(t) (left), e1(t)(middle), τ1(t) (right), t ∈ [0, 30] for Example 6.5.
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For this experiment, we choose the following PID parameters 
1 2 3 4 5

30P P P P PK K K K K= = = = = , 

1 2 3 4 5
15, 10, 5D D D D DK K K K K= = = = = , 

1 2 3 4 5
20, 10, 5I I I I IK K K K and K= = = = = . The initial and final 

positions of the robot manipulator are shown in Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, 
and Figure 24 illustrate the variations of θi(t), ei(t) and τi(t) for i = 1,2,…,5, across the time interval [0, 30] 
(during the first 30 seconds).

Example 6.6. (Simulation results for the six-link robot manipulator): In this final experiment, we 
consider a 6-link robot manipulator. For this test we utilize the following values: m1 = 6, m2 = 5, m3 = 4, m4 
= 3, m5 = 2, m6 = 1, l1 = 6, l2 = 5, l3 = 4, l4 = 3, l5 = 2, and l6 = 1. The target position is 

1 2 3 4 5 6( , , , , , ) , , , , , .
2 3 4 5 6 7f f f f f f
π π π π π πθ θ θ θ θ θ  =  

 

Figure 21: θ2(t) (left), e2(t)(middle), τ2(t) (right), t ∈ [0, 30] for Example 6.5.

Figure 22: θ3(t) (left), e3(t)(middle), τ3(t) (right), t ∈ [0, 30] for Example 6.5.
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Figure 23: θ4(t) (left), e4(t)(middle), τ4(t) (right), t ∈ [0, 30] for Example 6.5.

Figure 24: θ5(t) (left), e5(t)(middle), τ5(t) (right), t ∈ [0, 30] for Example 6.5.

Figure 25: The initial position (left) and the final position (right) for Example 6.6.



• Page 19 of 21 •Baccouch and Sun. Int J Robot Eng 2024, 7:038 ISSN: 2631-5106 |

Citation: Baccouch M, Sun J (2024) Proportional-Integral-Derivative Controller for an n-Link Revolute Robot Manipulator. Int J Robot 
Eng 7:038

The initial conditions are
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The PID parameters are 
1 2 3 4 5 6

30P P P P P PK K K K K K= = = = = = , 

1 2 3 4 5 6
15, 10D D D D D DK K K K K K= = = = = = , 

1 2
20I IK K= = , 

3 4 5 6
10I I I IK K K K= = = = . The initial and 

final positions of the robot manipulator are resented in Figure 25. Figure 26, Figure 27, Figure 28, Figure 
29, Figure 30, and Figure 31 illustrate the behaviours of θi(t), ei(t) and τi(t) for i = 1,2,…,6 over the time 
interv30] (initial 30 seconds).

Figure 26: θ1(t) (left), e1(t)(middle), τ1(t) (right), t ∈ [0, 30] for Example 6.6.

Figure 27: θ2(t) (left), e2(t)(middle), τ2(t) (right), t ∈ [0, 30] for Example 6.6.
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Figure 28: θ3(t) (left), e3(t)(middle), τ3(t) (right), t ∈ [0, 30] for Example 6.6.

Figure 29: θ4(t) (left), e4(t)(middle), τ4(t) (right), t ∈ [0, 30] for Example 6.6.

Figure 30: θ5(t) (left), e5(t)(middle), τ5(t) (right), t ∈ [0, 30] for Example 6.6.

motion to achieve target positions from given initial 
conditions. We first derived the system’s equations 
of motion using the Lagrangian formulation. 
Subsequently, the PID is implemented, and 
the resulting second-order system of ordinary 

Conclusion
In this paper, we introduced a Proportional-

Integral-Derivative (PID) control approach for an 
n-link robot manipulator, aimed at guiding its 
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3. Gopal D, Murugesh V, Murugesan K (2006) Numerical 

solution of second-order robot arm control problem 
using Runge-Kutta-Butcher algorithm. International 
Journal of Computer Mathematics 83: 345-356.

4. Leena G, Ray G (2012) A set of decentralized PID 
controllers for an n-link robot manipulator. Sadhana 
37: 405-423.

5. Baccouch M, Dodds S (2020) A two-link robot 
manipulator: Simulation and control design. Int J 
Robot Eng 5: 028.

6. Ma H, Ren H, Zhou Q, Li H, Wang Z (2022) Observer-
Based Neural Control of N-link Flexible-Joint Robots, 
IEEE Transactions on Neural Networks and Learning 
Systems 35: 5295-5305.

7. Zhai J, Li Z (2021) Fast-exponential sliding mode 
control of robotic manipulator with super-twisting 
method. IEEE Transactions on Circuits and Systems 
II: Express Briefs 69: 489-493.

8. Kumar SA, Chand R, Chand RP, Sharma B (2023) Linear 
manipulator: Motion control of an n-link robotic arm 
mounted on a mobile slider. Heliyon 9: e12867.

9. Sa´nchez-Sa´nchez P, Arteaga-Pe´rez MA (2012) 
Simplied methodology for obtaining the dynamic 
model of robot manipulators. International Journal 
of Advanced Robotic Systems. 9.

10. Islam MA (2015) Accurate solutions of initial value 
problems for ordinary differential equations with 
the fourth order Runge Kutta method. Journal of 
Mathematics Research 7: 41.

11. Murray RM, Li Z, Sastry SS (2017) A mathematical 
introduction to robotic manipulation. CRC press.

12. Musa H, Saidu I, Waziri MY (2010) A simplified 
derivation and analysis of fourth order Runge 
Kutta method. International Journal of Computer 
Applications 9: 51-55.

differential equations is approximated using the 
classical fourth-order Runge-Kutta method for 
systems. The efficiency of the control strategy 
is demonstrated through a series of numerical 
experiments, involving the simulation of the 
manipulator’s motion from an initial position to a 
desired target position. This paper focuses on the 
n-link robot manipulator in two-dimensional space. 
The PID controller introduced in this paper can be 
extended to accommodate robots with prismatic 
joints. In the future, we are planning to extend our 
approach to the n-link robot manipulator in three-
dimensional space, where we will consider other 
typical joint types, including revolute (the attached 
links rotate about a common axis), prismatic (the 
attached links translate about a common axis) and 
spherical (the attached links rotate about a point).
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