Appendix

Appendix A:
Incorporation of Aerodynamics Flexibility in a Quasi-Steady Heuristic Model for Aerodynamic Performance Estimation
A.1. Linearized Dynamic Aeroelastic Synthesis

Following the Unsteady Aerodynamics the lift L and moment M of the wing as given could be taken to be acting on the typical section. To start the analysis, one should look at the dynamics of the wing represented by the typical section following the Lagrange equation (Djojodihardjo and Yee [52])
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Which can be reduced to the general governing equation for such two-dimensional pitching and flapping (heaving) aerodynamic section given by:
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Where m is the mass per unit span of the typical section, Sα is the static moment of the typical section with respect to the elastic axis, Iα is the polar moment of inertia of the typical section with respect to the elastic axis, Kh and Kα are the bending (heaving) and torsional spring stiffness, respectively, of the typical section. The typical section experiences movement in two degrees of freedom, i.e. h, heaving (bending) displacement in the vertical direction (positive downward), and α , pitching angular displacement (positive nose up). L and MAC are the aerodynamic Lift and Moment, respectively; both L and MAC are acting on the aerodynamic center (L positive upward, MAC positive nose-up). By using Equations (A.3) and (A.4) for a two degree-of freedom pitching and heaving typical section, the ornithopter wing is represented by a typical section, which implies that the inertial and other related properties of the wing are considered to be “collapsed” at the typical section. 

Noting that the wing is essentially following pitching and flapping motion for its aerodynamic performance, then the elasticity of the wing could be considered to modify the aerodynamic pitching and flapping. In other words, each of the pitching and flapping motion has two components, the motion based (with subscript “rigid”) and the elasticity based (with subscript “el”). Hence the dynamics of the flexible pitching and flapping wing can be identified with the parameters:
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Which can be elaborated to
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The rigid part can be evaluated using linearized aerodynamic approach outlined in the section II of the main text:
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The symbols used in (A.7) and (A.10) refer to those outlined in the section II of the main text, and should not be confused with the notations utilized in this Appendix. Oscillatory motion assumes that
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Where 
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 is the harmonic frequency, due to the flexibility of the wing structure (and not to be confused with the flapping or pitching frequency). The Flapping Ornithopter Binary Aeroelastic Typical Section modeling is schematically shown in Figure A1. 
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Figure A1: Schematic of Flapping Ornithopter Binary Aeroelastic Typical Section.
Substituting into the dynamic equation of motion Equations (A.3) and (A.4), there is obtained
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Or
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The terms on the left hand side of the equation leads to an Eigenvalue problem, which can be solved to yield the eigenfrequencies and eigenmodes:
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Using the dynamic response relationship of the flexible wing due to aerodynamic and other exciting force, one will be able to evaluate the total prevailing aerodynamic angle of the flapping and pitching motion.

A.2. Typical Section Representation of Non-Oscillating Flapping Wing for Aeroelastic Analysis
For aeroelastic analysis, two different aerodynamic approximations, with increasing complexity, will be utilized; these are the Quasi-Steady and classical unsteady (harmonic) aerodynamics of Theodorsen [14]. To gain insight into the problem, the simplest approach, the 
1.1 Quasi-Steady Aerodynamic Model, or Low Frequency approximation, can be followed. For the quasi-steady aerodynamic model, the aerodynamic Lift L and Moment MAC, as well known in steady linearized aerodynamics, are given by:  
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And
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Since linearized aerodynamics is used, the airfoil essentially is regarded as a flat plate. From Figure 3, the aerodynamic moment with respect to the elastic axis is given by
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Hence Equations (A.13) and (A.14) can be rewritten as
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Which is known as the flutter equation (an eigen-value or stability equation). In matrix notation, this is given by:
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Where
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    (Aerodynamic “Stiffness”)

For convenience, following the practice in aeroelasticity, the analysis of flutter stability can be obtained by assuming a solution of the form:
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Solving as eigen-value problem, going through the algebra will results in the flutter stability characteristic equation given by:
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Which has a general form of:
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Where:
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The characteristic equation is a fourth order polynomial which has four roots;
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and the solution is given in the form
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Where σ is damping, ω is frequency and 
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Vibration mode representing the displacement vector. 
Table A1:  Flutter stability solution categories.
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	p
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	((, ( i(
	((, (  i(

	Type of Motion
	Harmonic:

2positive frequency

2negative frequency
	Aperiodic:

2 diverging

2 converging
	Aperiodic:

1 diverging

1 converging

Harmonic:

1 positive frequency

1 negative frequency
	Oscillatory:

1 div.pos.freq

1 conv.pos.freq

1 div.neg.freq

1 conv.neg.freq 

	Type of Instability
	Neutral
	Divergence
	Divergence
	Flutter

	Category
	I
	III
	IV
	II


(adapted from Done [51,52].

Following Done [53,54], as utilized by Djojodihardjo and Yee [52], the solution can be conveniently and comprehensively represented by damping and frequency diagrams as functions of either dynamic pressure q, or reduced frequency (or reduced velocity UR) kR = U/(b.(), or velocity, as illustrated subsequently, or summarized in a table. The table allows the classification of solution according to the values of the coefficients a0, a2, a4, and the stability categories that result. The stability of motion depends on the value of σ (aerodynamic damping). As can be concluded from Eq. (A.28), and summarized in Table A1, if σ > 0, then the displacement vector {x} will oscillate with increasing amplitude in time, and the resulting motion will be unstable. If σ = 0, a neutrally stable oscillation will result. Only when σ > 0 the oscillation will subside in time.

A.3. Low  Frequency Aeroelastic Analysis of Flapping Wing Ornithopter as Typical Section 

For the purpose of aeroelastic modeling and assessment using Low Frequency Aerodynamic  model approach, the Ornithopter Flapping Wing Model elaborated in section II is represented by a typical section. 
Table A2: Flapping wing typical section characteristic of the ornithopter flapping wing model.

	Parameter
	Unit
	Value

	Mass
	kg
	2.5480e-04

	Span
	m
	0.4

	c
	m
	0.08

	b
	m
	0.04

	e
	-
	-0.02

	Omega alpha
	Rad/sec
	5.9178e + 04

	Omeha_h
	Rad/sec
	5.9178e + 04

	(
	Kg/m3
	1.225

	Cl_alpha
	-
	6.1832

	y
	m
	0.2

	E
	GPa
	2.9000e + 09

	I
	m4
	8.3333e-10

	G
	GPa
	1.1154e + 09


The detail of the computational procedure is elaborated by Djojodihardjo and Yee [52], and a characteristic polynomial for the flutter stability equation analogous to Equation (A.25) is obtained. The computations are performed using the following wing geometry and parameters: the wingspan of 40cm, chord length of 8 cm, and the wing shape is rectangular. Based on the data utilized, baseline sectional properties of the typical section model representing the flapping ornithopter wing have been evaluated and tabulated in Table A2. Based on the data given there, some parametric study can be carried out to obtain a favorable aeroelastic configuration.
A.4. Computational Results
Several simplifying assumptions have been made in order to obtain some insight into the flexibility characteristics of the ornithopter flapping wing biomimicry. The elastic properties listed there is based on keratin (Kock [55]). The computational results as shown in Figure A2 and Table A3, indicate characteristics typical of the second column of Table A1, which will not lead to aeroelastic instability. In addition, the results also show that the prevailing eigen frequencies estimated using the quasi-steady aerodynamics in the operational range of the flapping ornithopter is much smaller than the pitching and flapping frequency of the ornithopter wing. 
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Figure A2: Numerical computation to determine the flutter stability of the Low Frequency Model of Ornithopter Wing Typical Section. Dimensionless frequency and damping are plotted against velocity.
Table A3: Computational Results of Aeroelastic Stability Characteristics - Low Frequency Model
	x_alpha
	0.5000
	R_alpha
	0.0015

	Mass
	2.5480e - 04
	I_alpha
	3.4106e-07

	S_alpha
	5.0960e - 06
	K_alpha
	1.1944e = 03

	K_h
	906.2500
	a0
	1.1593e + 06

	a1
	3.4122e + 05
	a2
	0.0561

	A3
	9.5106e-05
	a4
	6.0933e-11

	Determinant
	0.0029
	V
	-0.9972
	-0.9972

	
	
	
	-0.0747
	-0.0747

	D
	1.0e + 29*
	
	

	
	-0.1079
	0
	
	

	
	0
	5.5821
	
	

	Matrix A
	1.0e + 30*
	
	

	
	0.2737
	3.8000
	
	

	
	0.0213
	0.2737
	
	


Such conclusion is considered to be reasonable and in confirmation with observation on biosystem. In addition the flexural property as represented by K( shows that, if quasi-steady aerodynamics is assumed, the elastic deflection due to the prevailing aerodynamic force as calculated using the unsteady aerodynamics elaborated in section 2 will produce at most 5% change in ( or (’. This situation is utilized in the linearized approach presented in the main text section IX in establishing a heuristic model.
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