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Abstract
Geochemical modelling of ore deposit gives preliminary information on the supergene enrichment of 
the metallic ore in the subsurface. With recent advances in analytical technology, thermodynamic data 
necessary for modelling rock-mineral weathering and water-mineral interaction have become available, 
thus enabling the prediction of geochemical processes. The PHREEQC code enables the simulation of 
weathering, secondary mineral formation, and metal transport using thermodynamic models for mineral 
dissolution and metal sorption. In Ni laterite deposits, goethite is the host mineral in the oxide type whereas 
both goethite and garnierite are the host minerals in the silicate type. In both types of Ni laterite, nickel 
and cobalt are associated with goethite via surface precipitates or surface complexes or by structural 
incorporation. This study presents a reactive transport simulation for the formation of both silicate and oxic 
Ni laterite weathering at ambient conditions using PHREEQC with a supplemental thermodynamic model. 
The PHREEQC simulation of Falcondo Ni laterite (silicate) revealed that the increasing trends of evolution of 
minerals are goethite, antigorite, sepiolite, falcondoite and enstatite. Similarly goethite, antigorite, enstatite 
and talc were reproduced for the Koniambo Ni laterites (oxic). For both laterite types, the pH at the limonite 
zone varies from 9.1 to 8.9; whereas the pH at the saprolite zone is 7.8 (for silicate laterite) and 8.3 (for 
oxic laterite). Starting from ultramafic rock consisting of forsterite with a mole fraction of 0.827, fayalite 
(0.1667) and Ni2SiO4 (0.006) co-existing as an ideal solid solution, the simulation of the oxic laterite show 
that 0.28 wt.% Co and 1.18 wt.% of Ni were sorbed on goethite. In contrast, 0.25 wt.% Co and 1.25 wt.% Ni 
were adsorbed on goethite for silicate Ni laterite simulation. The simulations produce a weathering profile, 
mineral assemblages and ore grade similar to that observed in natural Ni laterite deposits.
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occurrences of the alteration minerals present in 
both oxide and silicate types of Ni laterite have 
been studied by many researchers [2-8]. Goethite 
is the host mineral in the oxide type whereas both 
goethite and garnierite are the host minerals in the 
silicate type [5,6].

Introduction
The majority of Ni and Co used in manufacturing 

both super alloys and petrochemicals and in the 
aviation industry are obtained from Ni laterite 
deposits [1]. Consequently, the evolution, 
weathering profile, mineralogy and mode of 
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Reactive transport simulations, based on 
thermodynamics and mass transfer, can be 
used to investigate weathering processes, 
regolith formation, weathering profile thickness 
and metal leaching [9-21]. The PHREEQC (pH-
REdox-Equilibrium Code) enables us to simulate 
weathering, secondary mineral formation, and 
metal transport using thermodynamic models 
for mineral dissolution and metal sorption [22]. 
However, previous attempts to simulate the 
formation of Ni laterite weathering using PHREEQC 
were unsuccessful, resulting in an unrealistic 
pH in the limonite zone containing goethite and 
variations between the hypothetical and actual 
layer thickness [17]. In particular, the pH above 7 
required for total adsorption of Ni onto goethite 
was not attained in the previous published models 
[17,18]. Recent modelling of ultrabasic accounted 
for Ni adsorption on goethite as well as existence 
of Ni in the goethite structure and its occurrence 
as surface complex and precipitates [18]. However, 
the modelling was done using thermodynamic data 
obtained for ferrihydrite rather than goethite and 
unable to explain the Ni enrichment in present 
day laterites as well as unrealistic high amount 
of nickel. In addition, no model has been able to 
account for reproduction of cobalt adsorbed or 
incorporated in goethite present in Ni laterites 
Crucial to success of a reactive transport simulation 
is the thermodynamic (and potentially kinetic) 
model is it based on.

In the present work, a reactive transport 
modelling inclusive PHREEQC and the basic Stern 
model for electrostatics have been used to develop 
the secondary nickel ores profile with vertical 
progression of the alteration front. Also, the 
resulting thermodynamic and PHREEQC models 
have been used for the advective transport 
simulation of oxide and silicate laterites as applied 
for the sorption of Co and Ni by goethite [23,24]. 
The thermodynamic models used with PHREEQC 
with equilibrium constants have been used to 
simulate the precipitation of relevant secondary 
phases from [25]. The model inputs include those 
for garnierite (silicate) Ni laterite and limonite 
(oxide) Ni laterite. The outcome of the modelling 
provides an in-depth empathy of the weathering 
mechanism in the Nickel laterites. The validity 
of the model provides new insights into further 
processes that control the mobility of elements 
and formation of these Nickel laterites.

Method
PHREEQC Geochemical modelling of Ni Laterite 
Formation

The thermodynamic calculations involved 
the modelling of the Ni laterite formation from 
weathering of ultramafic rocks were carried out 
using the geochemical code PHREEQC. This program 
is well known for its capability for calculating 
complex sorption reactions between aqueous 
species and mineral assemblages both in 1D 
advection-diffusion-reaction and transport mode. 
Goethite associates with Ni and Co through surface 
complexation, surface precipitation and structural 
incorporation; however, existing thermodynamic 
models (e.g., llnl.dat) available with PHREEQC do 
have equilibrium constants for surface complexation 
or structural incorporation. Consequently, we 
supplemented the existing llnl.dat thermodynamic 
model with a surface complexation model derived 
from fitting to laboratory sorption experiments 
for Ni sorption up to 0.42 wt.% and 0.2 wt.% Co 
[23,24]. A two-site model was used to describe the 
surface complexes; the goethite surface area was 
assumed to be 50.4 m2g-1. The surface electrostatics 
was evaluated using a basic Stern layer model with 
a capacitance of the Stern layer set to 1.05 F/m2 
with all charges at the 0-plane [26]. The surface 
complexation model is summarised in Table 1.

A number of important secondary phases 
associated with silicate laterites are not included 
in the distributed llnl.dat model (“database”). The 
chemical reactions, equilibrium constants and 
enthalpy of formation for dominant mineral phases 
in silicate Ni laterite were obtained from literature 
[25]. These are reproduced in Table 1. Thus, the 
llnl.dat thermodynamic model was modified to 
include thermodynamic parameters for népouite, 
falcondoite, kerolite and pimelite phases given 
by [25]. The resulting thermodynamic model was 
to simulate the formation of oxide Ni laterites 
(e.g., Koniambo, New Caleodonia, Figure 1) [5] 
and silicate Ni laterites (e.g., Falcondo, Dominican 
Republic, Figure 2) [3,4].

Model Input: Garnierite (Silicate) Ni Laterite
The parent rocks for the Falcondo Ni laterite 

are serpentinised peridotite, predominantly 
harzburgite with minor quantities of lherzolite, 
dunite and serpentinite [3,7]. The olivine in these 
rocks contains Fosterite 89 to 92 wt.% and 0.2 
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Table 1: Dissolution reactions for Mg and Ni end-members of garnierite and Fayalite-Fe, with the corresponding 
equilibrium constants at 25 °C and 1 bar used for the PHREEQC modelling.

Minerals Reaction Log K
Nepouite Ni3Si2O5(OH)4 + 6.00 H+ = 3.00 Ni++ + 2.00 SiO2 + 5.00 H2O 21.5a

Pimelite Ni3Si4O10(OH)2:H2O + 6.000 H+ = 3.00 Ni++ + 4.00 SiO2 + 5.00 H2O 11.46a

Falcondoite Ni4Si6O15(OH)2:6H2O + 8.0000 H+ = + 4.0000 Ni++ + 6.0000 SiO2 + 11.0000 H2O 12.31a

Kerolite Mg3Si4O10(OH)2:H2O + 6.000 H+ = 3.00 Mg++ + 4.00 SiO2 + 5.00 H2O 25.55a

Ferrosilite FeSiO3 + 2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 7.447 b

Enstatite MgSiO3 + 2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 11.3269b

Fosterite Mg2SiO4 + 4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ 27.8626llb

Fayalite Fe2SiO4 + 4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O 19.1113b

Fe(OH)2Ni >Fe(OH)2
-1 + Ni2+ = Fe(OH)2Ni

+ 12.60c

(FeOH)2Ni 2 > FeOH-0.5 + Ni2+ = (> FeOH)2Ni+ 10.1c

Fe(OH)2Co > Fe(OH)2
-1 + Co2+ = Fe(OH)2Co+ 12.80d

(FeOH)2Co 2 > FeOH-0.5 + Co2+ = (> FeOH)2Co+ 10.60d

aGali, et al [25]; bLLNL database [29], cUgwu, et al. [24], dUgwu and Sherman [23].

Figure 1: a) Schematic representation of major regolith units of Koniambo Ni laterite deposit; b) Percent 
weight (wt.%) of Fe and Si and c) Ni and Mn versus depth along the studied profile (Source: Dublet, et al. [5]).
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Figure 2: a) Schematic representation of major regolith units of Falcondo Ni laterite deposit Dominican Republic 
b) Percent weight (wt.%) of Fe, MgO and SiO2 and c) Ni and Co versus depth along the studied profile (modified 
from [2-4,7]).

The oxic laterite profile consists of ten layers 
with different proportions of iron oxides and 
secondary silicates [5]. The layers are primarily 
rock containing forsterite with < 0.4 wt.% Ni, 
enstatite and serpentine. These units have variable 
thicknesses and an overall thickness of 64m starting 
from the top unit and finishing at the bedrock. 
The boundary between limonite and saprolite 
zones occurs at 34m depth. The minerals present 
in the profile are goethite, asbolane, serpentine, 
lithiophorite, forsterite, hematite, talc, quartz, 
enstatite, chromite and birnessite. Except at the 
bedrock, goethite occurs throughout the profile [5].

The simulation started with a primary mineral 
assemblage consisting of olivine comprised of 
forsterite with a mole fraction of 0.827, fayalite 
(0.1667), Ni2SiO4 (0.006) and Co2SiO4 (0.001) co-
existing as an ideal solid solution. The simulation 
was allowed to react with rain water with pH 5.7 
and equilibrate with antigorite, sepiolite, goethite, 
talc, enstatite, birnessite and atmospheric CO2. 
The simulation is made up of layers of 10 cells 
of variable thickness and the no. of shifts used is 
120. Therefore, the total number of years for the 
simulation is 1200 years (no. of cells x shifts). The 
input file is similar to that of the silicate Ni laterite 

to 0.4 wt.% Ni [27,28]. These rocks weather to 
form Ni laterite with six distinct layers from top 
to base, namely: upper limonite, lower limonite, 
soft serpentine, hard serpentine, serpentinised 
peridotite and unaltered ultramafic protolith. The 
thickness of the layers are 0.8 m, 10 m, 13 m, 17 
m, 19 m and 23 m from top to base. The secondary 
minerals identified are Ni-sepiolite-falcondoite, 
Ni serpentine, goethite, kerolite, pimelite, and 
lizardite-nepouite [3,7].

Our starting primary mineral assemblage 
consisted of olivine comprised of forsterite with 
a mole fraction of 0.827, fayalite (0.1667), Ni2SiO4 
(0.005) and Co2SiO4 (0.001) co-existing as an ideal 
solid solution. This mole fraction was chosen 
to represent the composition of serpentinised 
peridotite described by Lewis, et al. [3]. The 
silicate laterite simulation was allowed to react 
with rainwater with pH 5.7 and equilibrate 
with antigorite, sepiolite, goethite, Ni2SiO4, 
Co2SiO4, enstatite, ferrosilite, nepouite, pimelite, 
falcondoite, kerolite and atmospheric CO2. The 
simulation is made up of layers of 6 cells of variable 
thickness. The detailed input file for this simulation 
and the results obtained in molality and wt.% are 
shown in Appendix.

https://vibgyorpublishers.org/content/ijesg/ijesg-9-067-appendix-file.doc
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secondary mineralogy of natural silicate (Figure 
1) and oxide laterites (Figure 2). The simulation 
of silicate Ni laterite revealed that the increasing 
trends of evolution of minerals are goethite, 
antigorite, sepiolite, falcondoite and enstatite. 
This is consistent with observation by [3,7,25]. 
Similarly, in order of increasing succession, the 
mineral reproduced for oxide laterites are goethite, 
antigorite, enstatite, talc and Ni2SiO4 which is 
consistent with that observed by [5].

Even though minerals such as pimelite, kerolite 
and nepouite were allowed to equilibrate, they did 
not precipitate out of solution. The formation of some 
secondary mineral phases may be thermodynamically 
favoured but limited by kinetics of precipitation e.g., 
birnessite, asbolane, serpentine. However, in the 
absence of kinetic models for these mineral, the 
only approach to is to prevent them from forming 
during the simulation. If the formation of antigorite 
is suppressed, then kerolite will form instead but 
prevent the formation of sepiolite and falcondoite 
with increase in the pH of the saprolite zone from 8.4 
to 11.3. In the simulation reported here, however, no 
phases were suppressed and the resulting mineralogy 
is in agreement with field observations. For both 
laterite types, the pH (Figure 4) at the limonite zone 
varies from 9.1 to 8.9 whereas the pH at the silicate-
saprolite zone is 7.8 and the oxide-saprolite zone is 
8.3. Also, the pH-depth diagram for silicate-Falcondo 
Ni laterite in the limonite zone range from pH = 7-9 
at a depth of 0-1.5 m and saprolite zone is from pH = 
7-8 at a depth of 1.5- 4 m (Figure 4a and Figure 4b).

expect that minerals that are formed on oxic 
Ni laterite are allowed to precipitate. The input 
parameters are illustrated in Figure 3 whereas the 
input values for the constants are shown in Table 1.

Ordinarily, mineral assemblage of phyllosilicates 
and Ni are components of solid solution series 
extending throughout the assemblage- Ni end-
members [30]. Their effect is presented as an ideal 
solid solution instead of separate minerals. Some 
ground waters derived from the base of nickel laterite 
profiles are soaked with respect to talc-like mineral 
but not with serpentine [31]. Serpentine is seldomly 
form under ambient conditions and curbed from 
the phases of equilibrium allowed for precipitation. 
In real-life the rates of precipitation support the 
development of metastable sepiolite and kerolite in 
Al-poor environments [32]. The inclusion of nickel 
as a starter to the assemblage system enhances 
the stability of the Nepouite phase, thus preventing 
its development to Fayalite [33]. The surface 
complexation model of [34], takes in consideration 
the attachment of metals and protonation on strong 
and weak reactive sites of a mineral phase (Table 
1b). The binding of these metals and subsequent 
protonation generates a charge on the ions sorbed 
and has been used to simulate the adsorption 
process. A charge depending on the ions sorbed, has 
been used in order to simulate adsorption process.

Results
Reactive transport simulation

The reactive transport simulations replicate the 

Figure 3: Steps for modelling oxide a) Silicate (Falcondo Ni laterite; b) Oxide (Koniambo) Ni laterite deposit.
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Weathering process and the formation of 
Falcondo Ni laterite, Dominican Republic

The simulation provides a spatial distribution of 
mineral phases with chemical species present after 
sorption of Ni and Co on goethite (Figure 5a, Figure 
5b and Figure 5c).

Also, secondary mineral phases (i.e. Fe(OH)2Ni), 
(FeOH)2Ni, Fe(OH)2Co, (FeOH)Co, antigorite, 
goethite, sepiolite and falcondite. The alteration 
mineral succession depicts that of natural silicate 
Ni laterite deposits.

The plot of elements versus depth for the silicate 
Ni laterite (Figure 6) indicate low amount of Ni, Mg, 
Fe and Si at the limonite zone as well as high Si, 
Ni and Mg at the saprolite zone. This trend closely 
matches that of natural Ni laterite. Magnesium, 
iron, nickel and silica are main components of the 
garnierite minerals.

Weathering process and formation of 
Koniambo Ni laterite, New Caledonia

The simulation provides a spatial distribution of 
mineral phases with chemical species present after 
Ni and Co sorption on goethite (Figure 7a, Figure 7b 
and Figure 7c). The secondary minerals generated 
include Fe(OH)2Ni, (FeOH)2Ni, Fe(OH)2Co, (FeOH)

This is in agreement with the pH 6.2 to 9.2 in the 
ferricrete and coarse saprolite zones of natural Ni 
laterite [35]. Similarly, at Cerro Matoso Ni laterite 
deposit, pH 8.1 was observed at the spring located 
at the base of the weathering profile [36]. At pH 
above 8, garnierite minerals are slightly soluble [7] 
while all the Ni released sorbs to goethite at pH > 7.

Starting from ultramafic rock with forsterite 
with a mole fraction of 0.827, fayalite (0.1667) and 
Ni2SiO4 (0.006) co-existing as an ideal solid solution, 
the simulation of oxic Ni laterite containing both Ni 
and Co, yielded 0.0001% Co adsorbed at the weak 
but abundant site (> (FeOH)2), as well as 0.28 wt.% 
Co at the strong but unabundant site (> Fe(OH)2) of 
goethite. Similarly, 1.18 wt.% of Ni was adsorbed at 
the > (FeOH)2 site while 0.003 wt.% Ni was adsorbed 
at the > Fe(OH)2 site. In contrast, for the silicate Ni 
laterite containing both Ni and Co, 2.9 × 10-5% Co 
was adsorbed on (> (FeOH)2) site of goethite while 
0.25 wt.% Co was adsorbed at the > Fe(OH)2 site. 
Similarly, 1.25 wt.% Ni was adsorbed at the (> 
(FeOH)2) site while 0.009 wt.% Ni was adsorbed 
at the > Fe(OH)2 site of goethite. This is consistent 
with the findings of [5] for transition laterite (0 to 
34 m) containing 0.8 to 1.5 wt% Ni and 0.1 to 0.3 
wt.% Co although they found 2.44 wt.% Ni and 0.09 
wt.% Co at depth of 46.5 m.

Figure 4: Plots of pH vs. depth for a) Falcondo Ni laterite (silicate) and b) Koniambo Ni laterite (oxic). 
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Figure 5: Simulated weathering profile of Falcondo Ni laterite.

Figure 6: Variation of elements along simulated weathering profile of silicate Ni laterite.

Discussion
These results indicate the presence of a wide-

ranging solid solution between Mg and Ni end 
members. In general, Ni-Mg hydrous silicates 
from Falcondo and Koniambo Ni lateritehave 
similar chemical characteristics to garnierite 
minerals examined in other worldwide Ni-lateritic 
deposits, excluding the Ni-dominated serpentine-
like phases, which have not investigated. It is 
suggested that Ni mobilization is initiated by 
fractures which enhances the circulation of water 
circulation. This process promotes weathering and 
preferential Ni concentration. There is evidence 

Co, antigorite, goethite, sepiolite, talc, enstatite and 
Ni2SiO4. Herein, the alteration mineral succession 
depicts that of natural oxic Ni laterite deposits.

The concentration of key elements for different 
zones of oxide Ni laterite (Figure 8) shows that the 
amount of Ni and Fe at the limonite zone is directly 
proportional but their amount decreases at the 
saprorite zone. This indicates close association 
between Fe and Ni in goethite in the limonite zone. 
Silica is zero at the limonite zone but increases 
rapidly in the saprolite zone. The concentration of 
Ni varies from 0.003 to 1.18 wt.% from saprolite to 
limonite zone.
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characteristic is indicative of ceaseless dynamic 
uplift compared to weathering rates. A dynamic 
environment supported the development of 
hydrous silicate Ni-laterites, thus promoting cyclic, 
repeated processes of weathering and denudation. 
Subsequently, fluids and other reworking migrated 
at variable depth, remobilized and reconcentrated 
to form high concentration of Ni ore minerals.

The simulation model of Koniambo Ni laterite 
indicates the precipitation of silicates at local 
equilibrium, thus promoting simultaneous 
precipitation of thermodynamically favorable 

of garnierite precipitation in Falcondo Ni-laterite. 
Most of garnierite mineralization in the Falcondo 
mine compose of Ni-sepiolite and falcondoite solid 
solutions with different concentration [4] which 
consistent with the simulated Ni laterite (Figure 5). 
This precipitation is associated with deformation 
structure that affected the weathering profile 
[37,38]. The occurrence of these deposits as in 
fillings and coatings on fracture surfaces, thus 
precipitating in an energetic dynamic environment. 
The ultramafic rock suffered uplift before it as 
altered to several mineral assemblages. This 

Figure 7: Simulated weathering profile of Koniambo Ni laterite.

Figure 8: Variation of elements along simulated weathering profile of oxide Ni laterite.
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for the formation of Koniambo Ni laterite, New 
Caledonia (oxic) and Falcondo Ni (silicate) laterite 
by weathering of the parent ultramafic rocks at 
ambient conditions produces a secondary mineral 
assemblage similar to that observed in the field. 
The main conclusions are listed below:

1.	 The descending progression of the pH front 
controls the mobility of the elements and 
dictates the Ni enrichment.

2.	 The precipitation of talc-like silicates at the 
cost of sepiolite is favoured by high pH due to 
the dissolution of olivine.

3.	 The alteration of mineral phases agrees with 
that of natural Ni laterite deposits. 

4.	 Moreover, the sorption of Co and Ni 
sorption to goethite involves both surface 
complexation and irreversible non-ideal 
structural incorporation. 

Hence, application of our surface complexation 
model to the simulated formation of Co, Ni oxide 
laterites is only a first-approximation and further 
refinements of thermodynamic models for the 
sorption of Co and Ni to goethite are needed.
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