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Abstract
Groundwater constitutes the foremost source of freshwater in El-Tor city, South Sinai, Egypt. In this context, 
a hypothetical mechanism amalgamating one-dimension (1D) Schlumberger geoelectric resistivity inversion, 
geohydrological analysis, borehole data is conducted to define aquifer geometry states in the study area. 
Furthermore, pumping tests along with hydro-chemical analysis is employed in the area.

Qualitative and quantitative modelling of the inverted resistivity data efficiently delineated the fresh 
aquifer with true resistivity ranging between 71 to 110 Ohm.m, and thickness ranging between 55 to 90 
m. Furthermore, aquifer loss in relation to the pumping regime was characterized as well. The eastern 
section of the freshwater aquifer characterized by thickness increase (90 m), tortuosity (1.31), hydraulic 
conductivity (63 m/day), transmissivity (5077 m2/day), formation resistivity factor (4.5), and storativity 
(0.224). Moreover, it characterized by decreased values of electrical conductivity (0.048~0.356 mS/m), 
electric anisotropy (1), mean resistivity (255 ohm.m), porosity (37%), and total dissolved solid (TDS) (496 
ppm).
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effective in preserving natural groundwater quality. 
On account of the absence of naturally occurring 
and/or recharged surface water, it is highly vital 
to particularly concern about the status of the 
groundwater. Of the most important interests 
is the quality and quantity of the groundwater, 
coupled with any natural or anthropogenic hazards, 
causing groundwater contamination. El-Tor is the 
administrative capital of South Sinai Governorate. 
Worth mentioning, the city was named after the 
Arabic name of the mountain in which the prophet 
Moses received the tablets from God. Furthermore, 
El-Tor is a rapidly develop ing city with a number of 

Introduction
Due to their strategic locations, coastal cities 

have been given significant attention throughout 
the decades. This attention has been outstandingly 
emulated in founding new settlements, tourism, 
industrial, cultiva tion, as well as mega-economic 
progressive pro jects. Thus, the demand of the 
freshwater in these cities considerably increased. 
Since Sinai Peninsula in general and El-Tor in 
particular are areas where no widespread aquifer 
damage has been manifested, a convenient 
groundwater quality protection program can be 
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In this context, a number of electrical conditions, 
conjoined with aquifer hydraulic parameters were 
investigated for the freshwater aquifer in the study 
area. Moreover, the effect of the pumping regime 
(pumping rate, well loss, well specific capacity, and 
well efficiency) in aquifer loss was analyzed.

Geological and Structure Setting
As mentioned by Rushdi Saidin [3], Gulf of Suez 

is the north-western arm of the Red Sea rift system 
which is bounded by a major border extensional 
fault. Not only, the El-Qaa plain is a secondary rift 

different tourist accommodations and amenities. 
The study area (El-Tor) is located in the middle 
sector of the El-Qaa plain, south-east Gulf of Suez, 
Sinai (Figure 1). The area is bounded by longitude 
and latitude 563000 to 566000 N and 3117500 to 
3119750 E, respectively covering an area of about 
4 by 3 km (12 km2). Furthermore, the screened 
groundwater bores in the El-Qaa Quaternary 
alluvial aquifer yield up to 16,000 m3/day. Although, 
the water is slightly brackish with total dissolved 
solids (TDS) of 500 ppm, it’s mainly employed for 
drinking in El-Tor as well as Sharm El-Sheikh [1]. 

Figure 1: Location map of the study area, El-Tor, Gulf of Suez, South Sinai [2].
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receive apprecia ble amounts of recharge from the 
surrounding eastern mountains. Significantly, the 
alluvial processes play a major role in the formation 
and evolution of the alluvial fans. The fans store 
water percolated and drained by the wadi’s drainage 
net. Beyond that, the groundwater potential of this 
structural basin depends upon the features of the 
rock units and the recharge conditions. Based on the 
aridity view of El-Tor region along with El-Tor arid 
climate, almost all-present and future freshwater 
needs goanna have to be acquired from local 
groundwater aquifers [6]. Withal, direct rain over El-
Qaa plain Quaternary aquifer is about 10 mm/y and 
reaches about 60 mm/y over the high surrounding 
basement rocks with heavy storms producing floods 
every few years. Although most of the precipitation 
occurs in wintertime, occasional torrential showers 
are expected in spring as well as in autumn and 
are associated with the monsoon winds coming 
from the south-east [17]. The water level of the 
Quaternary aquifer in El-Tor is fluctuating according 
to various annual recharging conditions with NE-SW 
flow direction [18]. Sultan, et al. [4], indicated that 
the aquifer discharges groundwater either to the 
coastal sabkha or to the Gulf of Suez. Conspicuously, 
numerous hydro-geophysical investiga tions have 
been conducted in the area bysundry authors [4,8-
10,13,18-28]. The common subsurface section of 
the area aggregated from the available boreholes 
data is illustrated in Figure 2.

Methodology
Geoelectrical measurements

The methodology of Schlumberger geo-
electrical resistivity sounding (VES) together with 
its implementation in groundwater investigation 
has been utilized by many authors [15,29-36]. 
According to Lashkarippour, et al. [37], the 
material’s resistivity is influenced by numerous 
factors such as groundwater salinity, saturation, 
aquifer lithology, as well as porosity. Furthermore, 
the relevance between aquifer characteristics with 
the layer electrical parameters have been studied 
and reviewed by many authors [17,27,32,38-43].

1D Geoelectric data inversion
Considering that sediments resistivity is one 

of the most variable physical properties along 
with the interpretation vagueness, it became 
vital to correlate the observed VES data with the 
available bore hole data. This correlation enables 

basin trending NNW-SSE parallel to the main rift 
system of the Gulf. But also, there is a conspicuous 
syncline plunging S-E in El Qaa plain northern 
zone. Sultan, et al. [4] established that the El-Qaa 
Quaternary alluvial aquifer is considered the main 
freshwater source in the El-Tor region. Moreover, 
the aquifer is characterized by the presence of 
Quaternary alluvial fans surrounded by igneous and 
metamorphic Pre-Cambrian rocks. Praiseworthy, 
there are about ten main wadis (dry ephemeral 
riverbed) dissevering the basement terrain and 
draining the water via the El-Qaa plain. The water 
quality data from El-Qaa aquifer designated that 
there is a distinct fresh/saline water transition zone 
across the aquifer upon which fresh surface water 
runs off from the wadis, recharges as well as mixes 
with saline groundwater [4-7]. Although seawater 
intrusion phenomenon is a very usual and is a 
widespread environmental problem in the El-Qaa 
plain, it has significant contribution to the salin ity 
of the groundwater [4,8-11]. Noteworthy, saltwater 
intrusion may transpire due to human activities and/
or by natural calamities such as cli mate change as 
well as sea level rise. The authority of the geological 
survey of Egypt, [12] elucidated the subsurface 
stratigraphy in the area through the drilled 
boreholes. According to the borehole description, 
El-Qaa is divided into three geomorphologic units, 
the eastern mountainous region, the western 
sedimentary hills, and the central plain [13,14]. 
The eastern mountainous district (Pre-Cambrian 
crystalline basement complex) is an allotment of 
the Arabian-Nubian shield discriminated by high 
relief ranging between 300 and 2662 m amsl. The 
eastern mountains are comprised of igneous and 
metamor phic rocks acting as a recharge boundary 
along the wadi outlets [15]. Notably, the western 
sedimentary hills encompass the Gebel Qabaliat 
ridge and embodied of different sedimen tary units 
along with basement rocks. This unit has an average 
elevation of 250m amsl, with a moderate slope 
towards the El-Qaa plain. This unit is characterized 
by a dense consequent net of drainage lines. The 
central plain unit in which the study area is located 
is outlined as a peneplain developed and produced 
during the Quaternary period. It is distinguished 
by being dissected by wadi courses, terraces, 
playa deposits and alluvial fans in which both sand 
dunes and sheets are observed along with being 
flat [16]. Shata, et al. [5] emphasized the alluvial 
deposits of this unit by high-storage capacity and 
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stratified layers characterized by a certain 
resistivity and thickness for each layer is present 
in conjunction with electric anisotropy [49-53]. 
Dar Zarrouk Parameters (DZ) were first introduced 
by Maillet [54], and it deals with the explanation 
and identification of electric anisotropy (λ) from 
the VES. Unless the column is completely uniform, 
Majumdar and Das, [55] implies that the average 
resistivity gauged for a current flow vertically 
through such a column will differ from that flowing 
horizontally. Not only has this dependence of 
resistivity on direction of current flow comprised 
an effective anisotropy, caused by the layering and 
not by the inherent anisotropy within the layers 
[56]. But also, it can be fundamentally attributed 
to the fact that the longitudinal resistivity (ρl) is less 
than the transverse resistivity (ρt), meaning that 
the current flow density along the bedding planes 
is greater than that normal to the bedding planes.

Dar Zarrouk parameters can be reckoned as 
follow;

Longitudinal unit conductance: i i iS  = h ρ

The total longitudinal conductance:

( )i i = 1
 = n

t i
S h ρ∑
Longitudinal resistivity:

( )l i i = 1  = 1
 =  = n n

ii i
H S h hρ ρ∑ ∑

assigning resistivity ranges to various lithologic 
units. On the other hand, the collected field data 
were interpreted through the following steps: (a) 
Matching the field curve with the standard curves 
of the auxil iary method [44,45], (b) Preparing a 
forward model consisting of a limited number of 
geo-electric layers founded on available borehole 
data (thicknesses and cor responding resistivities) 
[46], as well as (c) Entering the initial geo-electrical 
model into the IPI2 Win geo-electric modeling 
package [47,48].

Aquifer hydraulic conditions
A considerable number of investigation either 

measured or/and gauged were employed to identify 
a number of the significant freshwater aquifer 
hydraulic conditions in the study area. In this 
context, pumping tests together with a number of 
borehole samples analy ses were conducted for BH-2 
and BH-3. Two types of pumping tests were carried 
out, the first was a long-lasting pumping with a long 
duration at constant discharge, while the other is a 
step pumping test with variable discharge rates.

Aquifer electrical conditions
A. Electric anisotropy (λ)

The quantitative interpretation of the geo-
electric sounding data is meaningful if a horizontally 

Figure 2: Generalized subsurface stratigraphic section in the study area.
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root mean square (RMS) errors of the resulting 
models were 5%. Noteworthy, Figure 3 displays 
the correlation between the interpreted resistivity 
layers of VES 15 and its corresponding borehole 
data in the area. The inter preted VES stations 
were used to produce two geoelectric cross-
sections (profiles 1 & 2) in the study area (Figure 4). 
Moreover, geological subsurface data along with 
borehole data in the study area were integrated 
in this geoelectric cross-section as well. Notable, a 
total of four geoelectrical layers were recognized 
in the cross-sec tions (Figure 4), from top to bottom 
as follows:

1. A thin surficial layer characterized by true 
resistivity values range from 283 to 682 
ohm.m. These values correspond to wadi 
deposits with miscellaneous nature of alluvial 
dry Quaternary sediments (surficial deposits 
of silt, sand, and gravel igneous boulders). 
Because of the high variation in the grain 
size distribution across the area (in terms 
of vertical and horizontal distributions), 
along with the spatial variation in the ratio 
of gravel/sand/silt, high fluctuation of the 
resistivity values was imputed. The thickness 
of this layer range between 1 and 15 m.

2. The second layer characterized by true 
resistivity range from 172 to 287 Ohm.m, 
coincide with alluvium dry Quaternary 
sediments of fluctuating size of silt, sand, 
gravel, and fine rock fragments. The thickness 
of this layer varies between 15 and 55 m.

3. The third layer utilized by true resistivity range 
between 71 and 110 Ohm.m, correspond to 
fresh to brackish water bearing formation 
of Quaternary and Pre-Quaternary alluvial 
sediments of silt and gravel. The thickness 
of the layer varies between 55 and 90 m. 
Conspicuously, the shape of the aquifer was 
greatly influenced by the surface topography 
of the study area.

4. The bottom (fourth) layer characterized by 
very low true resistivity range from 3 to 5 
Ohm.m, coincide with salt water bearing 
formation of Quaternary and pre-Quaternary 
sediments of silt, sand, and gravel intercalated 
with some clay pocket with limited spatial 
extension. Worth mentioning, the fresh 
water of the third layer floats over the denser, 
more saline deeper water of the fourth layer 

Transverse unit resistance: i = t iT h ρ∗

The total transverse resistance:

( )i = 1
 = n

t ii
T h ρ∗∑
Transverse resistivity:

( ) = 1  = 1
 =  = n n

t i ii i
T H h hρ ρ∑ ∑

Electric anisotropy: ( )1 2 = 1t lλ ρ ρ >  

Root mean square resistivity:

( ) ( )1 2 =  =  = 1m t l l tρ ρ ρ λ ρ λ ρ∗ ∗ ∗

Where; iρ  is the true resistivity and ih  is the 
thickness for each layer (i).

B. Electric conductivity (EC)

Electrical conductivity (EC) stands for the 
measurement of the dissolved mate rial in an 
aqueous solution coupled with the ability of the 
mate rial to conduct electrical current through it. 
The higher the dis solved material in water or soil, 
the higher the EC will be in that material. Electrical 
conductivity (EC) can be expressed as [33]:

1EC = 
ρ

Geoelectrical Measurements
A scrutiny field survey was aforethought in 

the study area to allocate the VES taking into 
consideration the availability of boreholes in order 
to correlate the resistivity data. In this respect, 
20 VES were carried out in the study area using 
the Schlumberger configuration (Figure 1), with a 
maximum current electrode half-spacing (AB/2) of 
1000m. Moreover, the digital signal enhancement 
resistivity meter (ABEM-TERRAMETER, SAS 4000) 
was used to conduct VES. Noteworthy, to ensure 
the interpretation accuracy, the resistivity data 
were measured every sixth of a logarithmic decade. 
On the other hand, a number of aquifer tests along 
with water quality sampling were employed to 
recognize some of the hydrau lic parameters and/
or hydro-chemical composition of the fresh to 
brackish water aquifer.

1D Geoelectric Data Inversion
In the study area, each VES was subjected 

to one-dimension (1D) inverse modelling, in 
which the iterative procedure of Zohdy [57] was 
applied. Iterations were carried out to reach the 
best fit between the smoothed field curve and 
the calculated one. Nevertheless, the maximum 
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Figure 3: Correlation between the interpreted resistivity layers of VES 27 and its corresponding borehole 
data in the area.

 

 

Figure 4: The geo-electric cross-sections (profiles 1 and 2) in the study area, El-Tor, Sinai. Surface elevations 
(m + MSL) are based on GPS with an accuracy ± 5 ~ 10 m.
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gradual decrease toward the western part can be 
observed with the lowest thickness at VES 2 (14.2 
m) (Figure 5). Figure 6 illustrates a depth contour 
map to the top of the fresh aquifer ranged from 5 
to 90 m. The minimum depth is illustrated at the 

(Quaternary and pre-Quaternary).

Newsworthy, the fresh/saline water transition 
zone is effectively displayed. The highest thickness 
of the fresh aquifer is recognized in the eastern 
part of the area, especially at VES 15 (90 m) and a 

Figure 5: Thickness contour map of the fresh aquifer, El-Tor, Sinai.

Figure 6: Depth to the top of the fresh aquifer, El-Tor, Sinai.
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parameters. Schopper, and Batte, et al. [68,69] 
emphasized that the formation resistivity factor 
(F) describing porous media is dependent on the 
intricate geometry of the pore channels, therefore 
it describes the manner in which the grains are 
arranged. Notable, Paterson [70], aforementioned 
that 2 = F T Φ . In water investigations, 
storativity (S) has several applications such as 
groundwater numerical modelling, prediction 
of well performance, assessing the transport of 
contaminants, along with selection of the potential 
areas [71]. In the area, S were obtained from the 
available well logs.

In the area, the western zone is characterized by 
high porosity (ɸ) (42-44%) reflecting coarser grains, 
whereas, porosity decreases gradually toward the 
eastern part (37-40%) reflecting finer sediments 
(Table 1). For the fresh aquifer, the tortuosity ranges 
between 1.31 and 1.33, corresponded to an average 
range of porosity between 37 and 40% (Table 1). 
A direct relation between porosity and tortuosity 
can be recognized. Whereas, an inverse relation 
can be observed between tortuosity and grain size 
[72]. The pumping test of the fresh aquifer of BH-2 
in the eastern zone is characterized by the highest 
permeability (67 m/day) (Table 1), which reflects an 
increase in the grain size. In the area, transmissivity 
values range between 1,756 and 5,432 meter2/day 

southwestern part of the area (3-18 m) with gradual 
increase toward the eastern zone. Moreover, the 
true resistivity of the aquifer ranges from 10 to 
130 Ohm.m (Figure 7). Since, the geometries of the 
fresh aquifer indicate its sensitivity to the variation 
in the pumping regime, therefore, the safe yield of 
the fresh aquifer is controlled by its thickness.

Aquifer Hydraulic Conditions
Porosity (ɸ), tortuosity (T), hydraulic conductivity 

(K), transmissivity (τ), formation resistivity factor 
(F) as well as storativity (S) were investigated for 
the freshwater aquifer in the study area. Collins 
[58], pointed out, as an overarching principle the 
smaller the grains size, the greater the porosity (ɸ) 
in any natural unconsolidated material of uniform 
grain size [59]. In the area, porosities of the fresh 
water layer were obtained from the available 
well logs [60]. Nemours authors [61-64] stated 
that Tortuosity (T) increases with the increase of 
the grain size, whereas, an inverse relationship 
between porosity and grain size occurs. In the area, 
Maxwell’s equation [65], was applied to calculate 
tortuosity from the porosity (T = (3-ɸ)/2). Abdu, et 
al. [66] pointed out the direct relationship between 
the grain size and permeability (K). Straface, et al. 
[67] demonstrated that various attempts have been 
made to establish empirical relationships between 
Transmissivity (τ) and different geo-electric 

Figure 7: Resistivity contour map of the fresh aquifer, El-Tor, Sinai.
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average hydraulic con ductivities and current flow 
along the bedding planes are greater than those 
nor mal to the bedding planes [76]. According to 
Keller [77], ρl is governed by the more conductive 
layers, whereas ρt rapidly increase even if a small 
fraction of resistive layers were present. The prior 
clarification introduced the concept of electric 
anisot ropy (λ) in the area which range from 1 to 
2.1. The minimum (λ) is observed at VES-15 and 
the maximum is revealed at VES-10 (Figure 8e). On 
the other hand, the isotropic layers alternation can 
be transmuted into an equivalent heterogeneous 
and anisotropic structure. Pursuant to Rucker, et 
al. [78] this anisotropy may interpret as a result of 
alternating layers of clay and fine sands and/or the 
intercalation of different grain sizes in the same 
layer. However, in the area, anisotropy can be due 
to both of these two conditions. Noteworthy, the 
eastern sector of the area is characterized by low 
values of anisotropy which corresponded to high 
aquifer potential zones [79]. The mean resistivity 
(ρm) ranges from 17 to 244 Ohm.m. The minimum 
ρm is observed at VES-5 and the maximum is at 
VES-7 (Figure 8f). The change of the resistivity is 
dependent upon the direction of flow and the 
influence of lithology variation when there is a 
difference between the longitu dinal, transverse, 
and mean resistivities.

B) Electrical conductivity (EC)

EC was measured for layers 3 and 4 corresponded 
to the fresh and saline aquifer, respectively (Table 
2). Solinst TLC conductivity meter (Model 107) was 
used for EC measurements. The smart conductivity 
probe demonstrates conduc tivity that has been 
standardized to 25 °C, i.e., specific conduct ance, 
providing standardized repeatable comparable 
measure ments. Furthermore, the Solinst TLC meter 
provides simple and proper calibration either by 
single- or double-point calibration. The measurements 
were carried out downward with a 1 m interval. EC 
measurements in the area range from 0.017 to 0.048 

(Table 1). The highest transmissivity is observed at 
BH-2, which indicates high yielding potentiality of 
the aquifer in this sector. Paterson [70], equation 
is used to calculate the formation resistivity factor 
which range between 3.72 and 4.67 (Table 1). BH-
2is characterized by the highest formation factor 
(4.67) which reflect higher aquifer potentiality and 
better characteristics [73]. Storativity (S) of the 
Quaternary aquifer is deduced from the pumping 
test and range from 0.224 (BH-3) to 0.303 (BH-2) 
(Table 1). Should be acknowledge, these results 
are in good agreement with the typical value 
corresponding to uncon fined aquifer with shallow 
depths [74].

Aquifer Electrical Conditions
In the area, electric anisotropy (λ) along with 

electric conductivity (EC) were analyzed for the 
fresh aquifer.

A) Electric anisotropy (λ)

In the study area, the above men tioned Dar-
Zarouk geo-electric parameters were reckoned to 
the top of the fourth layer of the saline water bearing 
formation. The total longitudinal conductance 
(St) range between 0.21 and 3.58 1/Ohm. The 
maximum total conductance (St) is revealed at VES-
15 and the minimum at VES-14 (Figure 8a). Oteri 
[75], pointed out that the remarkable increase 
in St may concur with an average increase in the 
clay content. The total transverse resist ance (Tt) 
range from 727 to 18266 Ohm.m2. Noteworthy, 
the maximum Tt value is recorded at VES-7 and 
the minimum at VES-20 (Figure 8b). The average 
longitudinal resistivity (ρl) range between 9.1 and 
158 Ohm.m. The minimum ρl is observed at VES-2 
while the maximum is displayed at VES-14 (Figure 
8c). The average transverse resistivity (ρt) range 
between 24 and 507 Ohm.m. The minimum ρt 
is observed at VES-15, whereas the maximum is 
recorded at VES-7 (Figure 8d). Noteworthy, ρt is 
generally greater than ρl which indicate that the 

Table 1: Petro-physical hydraulic parameters of El-Tor aquifer, Sinai.

Boreholes Porosity (ɸ) 

(%)

Tortuosity (T) Permeability (K)

(m/d)

Transmissivity (τ)

(m2/d)

Formation 
resistivity factor 

(F)

Storativity (S)

BH-1 41 1.29 56 3,565 4.06 0.227
BH-2 37 1.315 67 5,432 4.67 0.303
BH-3 44 1.28 61 1,756 3.72 0.224
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Figure 8: Geo-electric (Dar-Zarouk) parameters to the top of the saline aquifer, El-Tor, Sinai.

Table 2: Electric conductivity of El-Tor aquifer, Sinai.

Borehole locations Electric conductivity (mS/m)
BH-1 0.025 to 0.193 
BH-2 0.048 to 0.356
BH-3 0.017 to 0.562

Pumping Regime and Aquifer Loss (M)
Well test was conducted to predict the maximum 

rate at which water can be pumped from a well along 
with water fall level (drawdown) for a given pumping 
rate. Furthermore, total drawdown in a well (St) can 
be manifested using Meier, et al. [80] equation, were:

St = Sa + Sw

Sa: Drawdown in the aquifer at the radius of the 
mS/m for the fresh aquifer, while range from 0.193 
to 0.562 mS/m for the saline aquifer.
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with less well and aquifer losses. Consequently, 
an adequate well design and appro priate pumping 
rate are essential to maintain the aquifer, decrease 
well loss, and ensure a long operating life.

Aquifer Hydro-Chemical Conditions
Total dissolved solids (TDS), major cations (K, Na, 

Mg, and Ca), and major anions (Cl, SO4 and HCO3) 
was sampled and chemically analyzed for fresh 
aquifer at BH-1 to BH-3 (Table 3). To be noticed, 
BH-2isutilized by the lowest TDS concentrations 
of 496 ppm indicating freshwater along with NaCl-
CaSO4 ionic type and Na2SO4 and MgCl2 genetic 
types. Moreover, BH-2 is located in the middle of 
the El-Qaa plain and mainly recharged by wadis 
of the eastern mountainous of the Pre-Cambrian 
crystalline basement. Accordingly, it receives 
higher amounts of recharge. Furthermore, BH-2 
is characterized by high hydraulic conductivity of 
52 m/day (Table 3) causing higher flow veloc ity 
and good conditions for water desalination. BH-3 
is utilized by TDS concentrations of 1,679 ppm 
indicated brackish water. BH-3 has NaCl-CaSO4 ionic 
type and Na2SO4 and MgCl2 genetic types. Based 
on the hydro-chemical parameters (Table 3), the 
best water quality can be recognized in the eastern 
part at BH-2 and the worst toward the western 

pumping well (aquifer loss).

Sw: Drawdown inside the well (well loss).

Due to the aquifer laminar flow resistance, 
aquifer loss (m) is instigated and is usually 
independent of the pumping rate. On the other 
hand, the specific capacity (m2/h) illustrates the 
well yield per unit of drawdown [81]. Of the most 
significant consideration in well design is well 
efficiency (E) as well as in well construction and 
development. Jacob [82], defined well efficiency (E) 
as; E = (Sa/St) × 100. Worth mentioning, the well 
yield depends on the aquifer characteristics, well 
parameters and the pump efficiency [83]. In the 
study area, well loss (m), aquifer loss (m), specific 
capacity (m2/h), and efficiency (%) were carried out 
for BH-2 and BH-3 with different pumping rates 
(m3/day). Ground Water for Windows package 
(GWW) was used to evaluate the acquired data 
of the step-drawdown test [84]. Figure 9 displays 
graphically the analyses results. To be noticed, an 
increase in the pumping rate was accompanied by 
an increase in both well and aquifer losses along 
with a decrease in well specific capacity and well 
efficiency. Therefore, for each development well, 
the pumping rate must be optimized to obtain the 
highest well efficiency and well specific capacity 

Table 3: Collected water samples and the corresponding average concentrations (ppm) of TDS, Na, Mg, Ca, Cl, SO4, 
and HCO3 for the fresh aquifer, El-Tor, Sinai.

Locations

(VES and Boreholes)

TDS K Na Mg Ca Cl SO4 HCO3

BH-1 1,137 3.21 319.2 16.9 86.8 556.7 87.2 52.2
BH-2 496 2.13 107.4 9.48 52.3 195.5 85.66 37.1
BH-3 1,679 5.0 445.4 23.1 128.9 845.5 129.2 74.5

Figure 9: Well hydraulic parameters of BH-2 and BH-3, El-Tor, Sinai.
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layer). Figure 9 illustrate the well loss (m), aquifer 
loss (m), well specific capacity (m2/h), and well 
efficiency (%) employed for BH-1 and BH-3 with 
different pumping rates (m3/day). Noteworthy, an 
increase in the pumping rate is accompanied by 
an increase in both well and aquifer losses, as well 
as decreasing in the well specific capacity and well 
efficiency (Figure 9). Consequently, an adequate 
well design and appro priate pumping rate are 
essential to maintain the aquifer, decrease well 
loss, and ensure a long operating life.
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