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Abstract
The screening robust estimation method for Phase I analysis is reviewed. Special attention 
is devoted to the exponentially weighted moving averages (EWMA) chart that is used in the 
retrospective stage of monitoring. The central point of the discussion lies in the way the 
decision threshold of the control procedure is set. Instead of proposing a presumably better 
Phase I control methodology, the article just aims to show that the aforementioned control 
chart was not designed in the most accurate form. However, it is shown throughout simulations 
that the appealing properties of an existing Phase II control procedure can be adapted in order 
to improve the design of the Phase I EWMA chart used in the robust estimation method for 
monitoring normal processes.

Keywords
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Introduction
In the current practice of the statistical process 

control (SPC), control schemes have been shown to 
be an effective tool for assessing the quality level 
of production processes and service operations. 
It is well known that control charts can be 
implemented in both the retrospective (Phase I) 
and prospective (Phase II) stages of monitoring. 
A Phase I analysis often involves an exploratory 
aspect consisting of the applications of statistical 
methods and techniques in order to better 
understand the nature of process performance and 
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variation patterns. Once the stability of a process 
is established by investigating available data for 
unusual measurements, an appropriate model is 
selected and estimated from the remaining data. 
The main goal in Phase I monitoring is to detect 
drops in the assumed stable model as soon as 
possible.

A Phase I analysis should include some wider 
aspects rather than simply designing a control 
scheme for establishing the stability of the available 
data. The effectiveness of the on-line process 
monitoring strongly depends on the success of 
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quality characteristic X, whose distribution is 
parametrized by the vector ( )1 2 = , ,..., pθ θ θθ  of p 
unknown constants. A control scheme consists 
of the charting statistics Ct, t = 1,2,…,k, and some 
estimated lower and upper control limits ( LCL

 

 
and UCL

 

, respectively) being known functions 
of an estimate θ̂  of the vector θ . The plot of all 
the Ct values together with the estimated control 
limits form a Phase I control chart. The whole 
iterative trial-and-error Phase I control procedure 
is described in Montgomery [6].

The chart signals indicating a possible out-
of-control situation as at least one value of the 
charting statistics lies beyond the most recently 
calculated control limits. Chakraborti, et al. [2] 
mainly identify two ways for setting up the control 
limits LCL

 

 and UCL
 

 in Phase I. The first way, due 
to Hillier [7] and Yang and Hillier [8], draws chart 
limits by controlling the probability of a false alarm 
for each of the available samples at a desired level. 
This probability is often referred to as the false 
alarm rate (FAR). The FAR - criterion approach just 
requires the knowledge of the marginal distribution 
of the t-th charting statistic and treats it as if it were 
statistically independent from those of the rest of 
the monitoring statistics. That is, the FAR approach 
does not deal with the simultaneous comparisons 
of several data subgroups to the same control limits 
and, consequently, has been proved to severely 
increase the nominal fixed level.

In the other hand, the second way proposes 
to evaluate the control limits for a previously 
specified false alarm probability (FAP), defined as 
the overall probability of at least one false alarm 
among the available k subgroups of data. As this 
approach does not ignore the essential problem 
of Phase I monitoring, the calculation of the 
FAP i clearly involves the derivation of the joint 
probability density function of the charting statistics 

,  = 1,..., ,tC t k  when the process is in control and the 
subsequent calculation of the control limits. The 
FAP criterion was first proposed by King [9] and has 
turn out to be the most usually recommended way 
for chart designing in Phase I.

The EWMA-Based Screening Robust 
Estimation Method (ESEM)

Let Xit denote the i-th, i = 1,…n, observation 
of the t-th, sample. It is assumed that all the Xit 
observations are independently and identically 

a well carried out retrospective stage of analysis. 
Several authors have addressed the need of setting 
accurate control limits in both the retrospective 
and the prospective stages of monitoring. Jensen, 
et al. [1] present an overview about the effect of 
parameter estimation on the performance of Phase 
II control char. Chakraborti, et al. [2] provide a 
detailed review with important technical insights 
on how to set control limits of univariate control 
charts in Phase I. Jones-Farmer, et al. [3] present a 
less technical review that considers chart designing 
issues and other Phase I methods for univariate 
and multivariate processes, including profile 
monitoring, and identifies potential opportunities 
for further research on Phase I methodologies.

In this article, the screening robust estimation 
method proposed by Zwetsloot, et al. [4] is reviewed 
and discussed. The screening robust estimation 
method was first proposed to be appropriate to 
deal with several data anomalies in Phase I and 
aims to overcome the need of developing new 
control procedures that use robust estimators 
of the parameters of interest suggested in Jones-
Farmer, et al. [3]. The screening robust estimation 
method involves the novelty idea of using EWMA 
schemes in Phase I as well. Nevertheless, as will 
be shown, the decision threshold of the proposed 
EWMA chart is based on the less recommended 
criterion as ignores the basic problem of Phase I 
monitoring.

To show our point of view, it is proposed to adapt 
the simulation-based algorithm by Shen, et al. [5] 
in order to reset the control limits of the EWMA 
chart in Zwetsloot’s method. It is thought that the 
appealing properties of the Phase II EWMA control 
scheme with probability limits, first introduced by 
Shen, et al. [5], can also lead to a more accurate 
way of setting the control limits of the Phase I 
Zwetloot’s EWMA control procedure.

Some General Features of Phase I Analysis
In the following, some relevant issues treated 

in Chakraborti, et al. [2] will be addressed as 
they constitute the fundament of this discussion. 
According to these authors, in the retrospective 
stage of monitoring, practitioners are faced to 
a decision problem similar to that of testing the 
homogeneity of a finite number of data groups.

Let k > 1 denote the amount of independent 
samples of size n > 1, taken from a some continuous 
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values were proposed to be obtained via simulation 
by following the recommendations in Chakraborti, 
et al. [2]. As stated and reported in Zwetsloot, et al. 
[4], needed L values were computed for all possible 
combinations of smoothing constants λI = 0.2, 0.6 
and 1.0 and sample sizes n = 5 and 10 in the case of 
standard normal observations. Proposed screening 
methods were calibrated to reach a nominal 1% 
FAR.

Critique of the ESEM
The main critique of the ESEM lies on the way 

the control limits are said to be found. Once 
the robust estimates for the normal mean and 
standard deviation are assessed, the ESEM aims 
to find the value of the constant L in (2) satisfying 
the recommendations in Chakraborti, et al. 
[2]. However, the ESEM proponents make no 
statements about which of those recommendations 
they exactly followed and even less explain how 
were implemented.

Although the recommendations in Chakraborti, 
et al. [2] exhibit a general character, provided 
relevant insights related to Shewhart-type schemes 
were only of concern. Recall that the EWMA-
based chart is a sequential sampling monitoring 
scheme and may simply not meet the stochastic 
independence assumption required by the FAR 
criterion for Phase I charting design. The use of a 
Phase I EWMA-based monitoring method faces 
a problem involving more complex dependence 
structures than Phase I Shewhart-type schemes do: 
One due to simultaneous comparisons of multiple 
samples to the same control limits and another due 
to the sequential dependence of the monitoring 
statistics among themselves.

While preparing this paper, it did not take too 
long to realize that during the implementation of 
the ESEM via simulation, sets of k = 50 samples 
from the standardized normal distribution were 
frequently obtained, for which the respective 
autocorrelation functions (ACF) were very similar 
to the one presented in Figure 1a. The ACF for the 
piston rings example provided in Montgomery [6, 
260] is presented in Figure 1b. In other words, both 
the presented ACF evidence the presence of at least 
a statistically significant first order autocorrelation 
pattern. Even so, if the autocorrelation pattern 
among the EWMA statistics were negligible, the 
essential problem of Phase I monitoring would still 

normally distributed with mean µ and standard 
deviation σ when the process is stable. Throughout 
the respective study, it was set k = 50 and n = 5 or 
10. 

Zwetsloot, et al. [4] studied some robust 
estimation methods of the normal location 
parameter µ along with the efficient µ̂  estimator 
for Phase I analysis. They paid special attention 
to screening methods based on the conventional 
formulation of the EWMA statistic. These authors 
recommend the use of a Phase I EWMA chart with 
λI = 0.6 (or a similar intermediate value) based on a 
robust estimator of the location parameter, rather 
than the based on the efficient one for monitoring 
the mean level.

The Phase I EWMA-based screening robust 
estimation procedure has to be applied as follows. 
First, initial robust estimates of the mean and the 
standard deviation, µ̂  and σ̂ , respectively, need 
to be obtained. The choice of these estimates is 
presented a little later. Next, for the t-th, t = 1,…,k, 
sampling moment the Phase I EWMA charting 
statistic is set to be

( ) 1 = 1tt I tZ X Zλ λ −+ − 			          (1)

with control limits given by

( )
( )

21 1
ˆ ˆ

2

t
I I

I

L
n

λ λ
µ σ

λ

 − − ±
−

		                        (2)

Where 0 ˆ = Z µ  and 0 1Iλ< ≤  is the smoothing 
constant for the EWMA statistic in Phase I. When Zt 
falls beyond the control limits for a given monitoring 
moment t, due to an assignable cause, the 
corresponding sample is identified as unacceptable 
and deleted from the analysis.

Zwetsloot, et al. [4] proposed initially estimate 
the normal by the median of the averages of the 
available k samples. This is ( ) ( )1ˆ  =  = ,..., kM X med X Xµ
. This estimator was found out to be efficient and 
robust to various patterns of outliers. The initial 
process standard deviation estimator σ̂  was 
proposed to be a variant of the biweight estimator 
proposed by Tatum [10] that is well known for its 
robustness. The estimation procedure is presented 
in Tatum [10] and was implemented as set out in 
Schoonhoven, et al. [11] with normalizing constants 
d = 1.068 for n = 5 and d = 0.962 for n = 10.

Another key moment in chart designing, is the 
choice of the constant L in (2). Corresponding L 
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monitoring moment.

According to Shen, et al. [5], at the t-th, t = 1,2…, 
monitoring moment, the upper control limit ht of 
the EWMAG has to satisfy the condition

( )
( )

1 1, 1

, 1 1,

 = 

;   = , t>1t t t t t

P Z h n

P Z h Z h n

α

α α

α

α− −

>

> ≤
		            (3)

Where α is the desired FAR level.

If it is assumed nt = n, t = 1,2,…,k formulation (3) 
can be adapted to the EWMA-type statistic (1) in 
Zwetsloot, et al. [4] in order to improve the design 
of the ESEM in Phase I analysis. In terms of the 
ESEM, condition (3) can be rewritten as

( )
( )

1 1 1

1 1 1

 = 1-

 = 1- ,  1t t t t t t

P LCL Z UCL IC

P LCL Z UCL LCL Z UCL t >

α

α− − −

≤ ≤

≤ ≤ ≤ ≤

    

          

     (4)

Note that expression (4) is conveniently defined 
in terms of a desired FAR value. Thus, operatively 
for our interests, the upper and lower control limits 
of the proposed monitoring method are evaluated 
as the 100%

2
α

×  and the 1 100%
2
α − × 

 
 percentiles, 

respectively, of the EWMA statistic (1) at the t-th 
monitoring moment. A simulation-based procedure 
is summarized below:

Step 1. Provided that at a given t-th, t = 2,…,k 
, monitoring moment if there is no out-of-control 
signal at moment t-1, a large enough number M of 
values of the “pseudo-EWMA” ˆ

tZ  are computed 
by generating random samples of size n from 

( )ˆ ˆ;  N µ σ  and using expression (1). The values 

be without addressing. Whichever way Chakraborti's 
recommendations were implemented, the chosen 
one leads to the comparison of k = 50 initial samples 
against a single control region (Figure 1).

In this regard, it would have been more suitable 
for the ESEM to design an appropriate charting 
methodology based on the joint multivariate 
density probability function of the charting EWMA-
type statistics Zt, t = 1,…,k, in order to satisfy the 
FAP designing criterion. Understandably, the 
deduction of this function could not be an easy 
task. Following the suggestions in Chakraborti, et al. 
[2], it may be preferable to work with the marginal 
conditional distribution of the EWMA statistic at 
each monitoring moment. As will be seen, this can 
be achieved by introducing the use of an adapted 
version of the EWMA chart with probability limits 
proposed by Shen, et al. [5] in the ESEM.

An EWMA Chart with Probability Limits for 
Retrospective Analysis

Shen, et al. [5] discuss two computational 
procedures for determining the upper control limit 
of an EWMA-type statistic Zt that is effective for 
monitoring Poisson count data with time-varying 
sample sizes in Phase II. This scheme is referred 
to as the EWMAG control chart because has 
the appealing property of having approximately 
geometric-distributed run lengths. This implies that 
the marginal distribution of a single conventional 
EWMA statistic does not practically depend on the 

Figure 1: Autocorrelation function of the EWMA statistic with λI = 0.6 for (a) a simulated set of k = 50 normal 
samples of size n = 5 and (b) the piston rings example in Montgomery (2013, 260).
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as certain quantiles of the marginal distribution of 
the EWMA statistic at every monitoring moment t 
= 1,…,k given that it was possible to establish that 
the process operates under stable conditions in the 
immediately preceding moment t-1.

As stated, the proposed screening scheme was 
calibrated to reach a desired nominal FAR level just 
to fulfil the purposes of this discussion. If is needed, 
a more accurate FAP-based charting design can be 
achieved by following the recommendations of 
Chakraborti, et al. [2] for FAP-based methods.

Simulation Study
Simulation settings

For comparing both the conventional and the 
probability limits formulations of the EWMA statistic 
in the ESEM, the simulation settings were assumed 
to be the same as in Zwetsloot, et al. [4]. Sets of k 
= 50 independent random samples of sizes n = 5 
or 10 were generated from a normally distributed 
process with mean µ and standard deviation σ.

The values of the smoothing constant λI for both 
of the ESEM formulations are chosen to be 0.2, 0.6 
and 1.0 for the same reasons outlined in Zwetsloot, 
et al. [4]. Each charting scheme was calibrated to 
reach FAR = 1%, so the respective L values for the 
conventional formulation (1) are those reported 
in Table 1 by Zwetsloot, et al. [4] for the ( )SM X∗  
estimator of the normal process mean µ and the 
explored k and n values.

Scenarios of interest
As established, needed stable Phase I samples 

µ̂  and σ̂  are the initial robust estimates of the 
normal parameters µ and σ, respectively, proposed 
by Zwetsloot, et al. [5]. Each of the ˆ

tZ  values are 
based on a randomly chosen 1

ˆ
tZ −  value from the in-

control marginal distribution of the EWMA statistic 
(1) obtained in the preceding monitoring moment 
t-1. For t = 1, it is assumed 0

ˆ ˆ = Z µ . Otherwise, 1
ˆ

tZ −  
is set as indicates in Step 4.

Step 2. The 100%
2
α

×  and 1 100%
2
α − × 

 
 empirical 

quantiles of the M values of ˆ
tZ , where α is the 

desired FAR level, are estimates of the upper and 
lower control limits, tUCL

 

 and tLCL
 

, respectively, 
at each monitoring moment t. 

Step 3. The actual current value of ˆ
tZ  is evaluated 

on the base of the observed data at moment and 
compared with the respective estimated control 
limits. If the condition t t tLCL Z UCL≤ ≤

    

 holds, the 
monitoring is continued to the next moment. 
Otherwise, the sample corresponding to Zt has to 
be deleted from the Phase I analysis.

Step 4. If it is decided to continue, the 
2

M α
×  

values of ˆ
tZ  from both the upper and lower tails 

of the marginal distribution obtained at moment 
t are eliminated. From the remaining values, one 
is randomly picked as the preceding 1

ˆ
tZ −  value for 

2t ≥  and the algorithm is restarted.

In few words, the above described approach 
would avoid the use of the multivariate joint 
distribution of the k charting EWMA statistics 
to compute the control limits for the screening 
procedure. Instead, it aims to approximate them 

Table 1: Approximated marginal distribution of the EWMA statistic with λI = 0.6 obtained from 50000 sets of k = 50 
normal samples of size n = 5 at each monitoring moment t.

Sample
Quartiles Mean

Standard

Deviation

Q0.25 Q0.50 Q0.75

1 -0.24439 -0.05764 0.13004 -0.05775 0.27729
2 -0.25912 -0.05704 0.14350 -0.05736 0.29828
3 -0.26074 -0.05856 0.14559 -0.05728 0.30035
4 -0.26113 -0.05771 0.14667 -0.05747 0.30091
5 -0.26018 -0.05694 0.14625 -0.05669 0.29981
6 -0.25975 -0.05741 0.14547 -0.05705 0.30027

     

50 -0.26050 -0.05731 0.14637 -0.05788 0.30056
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the marginal distribution of the EWMA statistic. 
Table 1 shows the main numeric attributes of the 
estimated marginal distribution with λI = 0.6 and n 
= 5. There are presented the estimated quartiles 
(Q0.25, Q0.50 and Q0.75), the mean and standard 
deviation of each distribution for the first six and 
the last monitoring moments.

It should be noted that, except for the first two 
monitoring moments, the marginal distribution of 
the EWMA statistic remains practically invariant. It 
could even be said that the marginal distribution 
of the first two moments are not so different from 
those obtained for further moments. This fact 
can be better appreciated in Figure 2, where the 
approximated marginal distributions of the first 
nine monitoring moments are shown (Figure 2).

The aforementioned fact has the natural 
consequence of drawing the approximately same 
control limits at each monitoring moment. In 
passing, it was stated in Chakraborti, et al. [2] 
that a commonly used approach to establish chart 
limits is to control the FAR at a desired level at 
every monitoring moment. This approach just 
requires the knowledge of the in-control marginal 
distribution for the t-th charting statistic, which is 
typically the same for all t = 1,…k, so the FAR is the 
same for all available samples. This is clearly the 
case the adapted version of Shen's procedure is 
dealing with. When FAR = 0.01, the results reported 
in Table 2 are obtained.

In Table 2, there are shown the estimated lower 
and upper control limits of the ESEM calculated 
on five sets of k = 5 independent samples of size 
n = 5 randomly generated from the standardized 
normal distribution. Each pair of control limits 
were computed for both the conventional and the 
probability limits formulations of the EWMA statistic 
with λI = 0.6. According to the results reported 
in Table 1, 50 UCL values that are very similar to 
each other should be expected for the probability 
limits formulation. So should be the LCL values. In 
Table 2, there are reported the maximum and the 
minimum of all the observed values for each set of 
samples as the respective upper and lower control 
limits of the adapted Shen's formulation. It has to 
be noted that the control limits calculated by both 
the methodologies are approximately the same for 
each set of samples. However, the ones calculated 
by the probability limits formulation are always 
slightly narrower.

come from a normal distribution with mean 
µ and standard deviation . It is assumed that 
contaminated observations come from a shifted 
normal distribution with mean 1  = µ µ δσ+ . This is, 
out-of-control situations are only due to changes in 
the process mean but not in the standard deviation.

As in Zwetsloot, et al. [4], both the scattered 
and sustained special causes of variation were 
considered. So the localized, diffuse, single and 
multiple step shifting patterns were of interest. For 
more details on how to deal with the investigated 
shifting patterns in order to plan current increases 
in the mean of the studied processes, the reader 
is asked to consult Section 3.1 in Zwetsloot, et al. 
[4]. The performance of both the formulations of 
the ESEM was evaluated for all considered shifting 
patterns, where δ = 0.0, 0.4, 1.0, 1.6 and 2.0. The in-
control state is obtained for δ = 0. As in Zwetsloot, 
et al. [4], it is assumed µ = 0 and σ = 1, without loss 
of generality.

Performance evaluation
In practice, Phase I is frequently used as an 

alternative way for exploratory analysis. Zwetsloot, 
et al. [4] propose to establish the effectiveness of 
the Phase I study in terms of both the true-alarm 
percentage (TAPt) and the false-alarm percentage 
(FAPt) defined as

( )
( ) = 1

number of correct signals1TAPt = 
number of unacceptable observations

R
r

r rR ∑      (5)

( )
( ) = 1

number of false alarms1FAPt = 
number of acceptable observations

R
r

r rR ∑ 	        (6)

Where r denotes the r-th simulation run. For this 
study, it is set R = 10000. The TAPt and the FAPt 
were evaluated for all considered shifting patterns 
in both the formulations of the ESEM.

Some results
For each explored combination of λI and n values, 

the marginal distribution of the EWMA statistic 
at the t-th monitoring moment in the Shen's 
probability limits formulation was approximated by 
generating M = 50000 “pseudo-EWMA” values ˆ

tZ  as 
indicated in the first step of the algorithm provided 
above. In the following, some interesting findings 
of the carried-out simulations are addressed.

For each monitoring moment, sets of k = 50 
random samples of size n were generated from the 
standardized normal distribution in order to obtain 
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same out-of-control scenarios and values proposed 
in Zwetsloot, et al. [4]. The results for λI = 0.6 are 
provided in Table 3.

It can be seen that, except for some reported 
cases, the Phase I EWMA chart performance of 
Zwetsloot's proposal exhibits slightly smaller TAP 
values than that of the Shen's probability limits 
formulation. This is not an unexpected result as the 
carried-out simulations suggest a narrower decision 
threshold for the probability limits formulation 

Although the respective results are not reported, 
similar conclusions to those presented were 
reached for the other explored λI values with n = 5 
and for all λI values in combination with n = 10.

Moreover, the detection abilities for both 
the formulations of the ESEM were estimated 
by using formulae (5) and (6) for each proposed 
out-of-control scenario. The probabilities of the 
conventional formulation of the ESEM were 
recreated for the location robust estimator and the 

Figure 2: Approximated marginal distribution of the EWMA statistic with λI = 0.6 obtained from 50000 sets of k 
= 50 normal samples of size n = 5 for the first nine monitoring moments.

Table 2: Control limits for the Phase I EWMA chart with λI = 0.6 obtained from 50000 sets of k = 50 normal samples 
of size n = 5 for both the formulations of the ESEM.

Normal parameters

estimations

Zwetsloot’s formulation Shen’s formulation

µ̂ σ̂ LCL UCL LCL UCL

-0.01935 1.01798 -0.79722 0.75852 -0.79237 0.75248
0.05729 0.99620 -0.70394 0.81852 -0.69584 0.80936
0.01954 1.03771 -0.77340 0.81248 -0.76644 0.80600
0.03217 1.05359 -0.77291 0.83725 -0.76938 0.83031
0.02998 0.97172 -0.71254 0.77250 -0.70355 0.76304
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procedure whose performance closely resembles 
that of FAR-based methods. It is well known that 
the FAR is the least recommended criterion for 
chart designing since it ignores the fundamental 
problem of Phase I monitoring consisting of 
simultaneous comparisons of multiple data groups 
against the same control limits. However, the ESEM 
makes a significant contribution in the search and 
implementation of new methodologies for Phase 
I retrospective analysis providing relevant insights 
about the robust parameter estimation in normally 
distributed processes. 

On the other hand, we feel that it is possible to 
use the appealing distributional properties of the 
EWMAG chart with probability limits proposed by 
Shen, et al. [5] to overcome the disadvantages of 
the conventional ESEM formulation and to design 
accurate monitoring proposals for Phase I based 
on the more suitable FAP criterion. Proposals may 

of the EWMA chart. The FAP values for both the 
formulations are comparable in all explored cases. 
Similar results were obtained for the other set 
values of the smoothing constant λI and the same 
estimators of the process parameters.

Recall that the probability limits formulation was 
intentionally calibrated to satisfy the FAR criterion 
of chart designing. Whatever it was, the way in 
which the EWMA chart of the ESEM was initially 
conceived gave it a performance that is quite 
similar to that of a FAR-based control methodology. 
However, the mere dependent nature of the 
EWMA statistic prevents chart designing in Phase 
I from being based on the FAR criterion because 
it requires the stochastic independence of the 
monitoring statistics.

Concluding Remarks and Recommendations
As was initially thought, the EWMA chart in 

the ESEM is conceptually a Phase I monitoring 

Table 3: Approximated performance of the Phase I EWMA chart with λI = 0.6 obtained from randomly generated 
sets of k = 50 normal samples of size n for both the formulations of the ESEM and a nominal 1% FAR level.

Approach n
TAP FAP

δ δ
0.4 1.0 1.6 2.0 0.0 0.4 1.0 1.6 2.0

Localized shifting pattern

Shen’s formulation
5 3.3 26.1 72.5 91.3 1.0 1.1 1.2 1.6 2.1
10 6.5 58.1 97.0 99.9 1.0 1.1 1.4 2.8 4.1

Zwetsloot’s

formulation

5 3.2 25.8 69.0 89.3 1.0 1.1 1.2 1.3 1.4

10 6.1 57.3 96.7 99.9 1.0 1.1 1.2 1.3 1.4

Diffuse shifting pattern

Shen’s formulation
5 1.3 1.4 2.1 3.0 0.9 1.0 1.0 1.0 1.1
10 1.0 1.3 1.5 2.1 1.0 1.0 1.0 1.1 1.1

Zwetsloot’s

formulation

5 1.2 1.2 1.5 2.3 1.0 0.9 1.0 0.9 0.9

10 1.0 1.2 1.3 1.5 1.1 1.0 1.1 1.0 1.0

Single step shifting pattern

Shen’s formulation
5 7.0 56.5 91.9 97.9 0.9 1.0 1.1 1.2 1.2
10 15.9 87.3 99.3 100.0 1.0 1.0 1.2 1.2 1.2

Zwetsloot’s

formulation

5 6.8 57.1 91.8 97.5 1.0 1.0 1.2 1.3 1.3

10 16.3 87.2 99.3 99.9 1.0 1.1 1.2 1.3 1.3

Multiple step shifting pattern

Shen’s formulation
5 5.8 47.9 86.8 95.9 1.0 1.2 1.6 2.0 2.3
10 12.7 80.9 98.2 99.8 1.0 1.3 1.7 3.2 3.6

Zwetsloot’s

 formulation

5 5.7 44.3 78.7 93.7 1.0 1.5 3.7 4.9 5.3

10 11.6 79.7 96.1 99.6 1.0 1.6 4.9 5.4 5.9
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even include the use of cumulative sums (CUSUM) 
monitoring schemes for Phase I. These are topics of 
our current research work.

References
1.	 Jensen WA, Jones-Farmer LA, Champ CW, Woodall 

WH (2006) Effects of parameter estimation on 
control charts properties: A literature review. Journal 
of Quality Technology 38: 349-364.

2.	 Chakraborti S, Human S, Graham MA (2009) Phase 
I statistical process control charts: An overview and 
some results. Quality Engineering 21: 52-62.

3.	 Jones-Farmer LA, Woodall HW, Steiner SH, Champ 
CW (2014) An overview of Phase I analysis for 
process improvement and monitoring. Journal of 
Quality Technology 46: 265-280.

4.	 Zwetsloot I, Schoonhoven S, Does R (2014) A robust 
estimator for location in Phase I based on an EWMA 
chart. Journal of Quality Technology 46: 302-316.

5.	 Shen X, Zou C, Jiang W, Tsung F (2013) Monitoring 
Poisson count data with probability control limits 
when sample sizes are time varying. Naval Research 
Logistics 60: 625-636.

DOI: 10.35840/2633-8947/6514

http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/405_02_Montgomery_Introduction-to-statistical-quality-control-7th-edtition-2009.pdf
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/405_02_Montgomery_Introduction-to-statistical-quality-control-7th-edtition-2009.pdf
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/405_02_Montgomery_Introduction-to-statistical-quality-control-7th-edtition-2009.pdf
https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A429498000&v=2.1&it=r&sid=AONE&asid=cb8eb679
https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A429498000&v=2.1&it=r&sid=AONE&asid=cb8eb679
https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A429498000&v=2.1&it=r&sid=AONE&asid=cb8eb679
https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A429498000&v=2.1&it=r&sid=AONE&asid=cb8eb679

	Title
	Abstract
	Keywords
	Introduction
	Some General Features of Phase I Analysis 
	The EWMA-Based Screening Robust Estimation Method (ESEM) 
	Critique of the ESEM 
	An EWMA Chart with Probability Limits for Retrospective Analysis 
	Simulation Study 
	Simulation settings 
	Scenarios of interest 
	Performance evaluation 
	Some results 

	Concluding Remarks and Recommendations 
	Table 1
	Table 2
	Table 3
	Figure 1
	Figure 2
	References

