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Abstract
Protein-based nanoparticles have unique properties, such as low toxicity, biocompatibility, and 
biodegradability, making them ideal for biological applications. These include vaccine delivery, cancer 
therapy, and cell imaging. Therefore, here we report the cellular uptake, cell viability and cytotoxicity 
evaluation of BSA-derived nanoparticles. Cytotoxicity was evaluated in-vitro in HeLa cells using a the MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) colorimetric assay. The assay revealed 
dose-dependent decrease in cell viability when the cells were treated with NP concentration ranging 
from 200 µg/ml - 3.125 µg/ml. These results were confirmed by flow cytometry assay. The estimated 
IC50 concentration was 26.4 µg/ml. There was a clear uptake by the cells after 30 minutes of incubation; 
furthermore, an hour later the nanoparticles reached the cytoplasm. The study’s results contribute to the 
understanding of the intracellular uptake, accumulation, and biological impact of the BSA nanoparticles 
which is important for their successful implementation in medical applications. These findings provide 
valuable insights into the potential applications of protein-based nanoparticles in vaccine delivery, drug 
delivery and biomedical imaging.
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semiconductors, lipids, carbohydrates, or proteins 
[7]. Among these, protein-based NPs have distinct 
advantages over others due to their low toxicity, 
biocompatibility, and facile biodegradability [8]. 
Properties such as size, shape, surface properties, 
and stability of the nanoparticles are crucial for 
the use of protein NP in cellular toxicity, uptake, 
distribution, accumulation. These protein-based 
NPs have a wide range of applications in biology, 

Introduction
During the past few decades, biomedical 

nanotechnology has been gaining importance for 
applications in drug delivery [1,2], cell imaging 
[3], cancer therapy [4] and disease diagnosis 
[5,6]. Nanoparticles (NP) are tiny particles 
measured in nanometers and they are often 
made from polymers, inorganic materials, metals, 
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including cell imaging [9,10], and drug delivery [11-
15].

In this study, we chose to examine serum albumin 
derived nanoparticles, since albumin is present in 
all mammals, is more biocompatible, and it can 
be matched with each species or even individuals. 
Bovine serum albumin has been used extensively 
to prepare protein nanoparticles and it binds to a 
variety of ligands such as fatty acids [16], hormones 
[17], metal ions [18], peptides [19,20], dyes [21], 
and drugs [22]. Their quick and safe entry into cells 
is an essential step for NP-based imaging or therapy. 
Additionally, the intracellular fate of NPs is critical 
to their success, considering that these carriers are 
intended to deliver specific molecules (i.e., genes, 
drugs, and contrast agents) to the cytosol, nucleus, 
or other specific intracellular sites. Since the NP has 
been designed for biomedical and pharmaceutical 
applications, therefore its ability to penetrate or 
permeate through the biological barriers should 
be evaluated. Understanding how NPs penetrate 

cells is crucial because it determines their function, 
intracellular destiny, and biological impact [23-25].

As part of our analysis, we examined the 
cellular uptake of nanoparticles and assessed their 
toxicity using an in vitro cytotoxicity assay and flow 
cytometry, as depicted in Scheme 1. Understanding 
how nanoparticles are internalized by cells helps 
optimize their design to enhance cellular uptake 
and consequently, the delivery of therapeutic 
payloads. Out of the different cytotoxicity assays 
available, we used MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl-2H-tetrazolium bromide) assay to 
assess the viability of the cells due to its sensitivity 
and reliability in indicating cellular metabolic 
activity. Initially devised by Mosmann, et al. in 
1983 [26], this method serves as a quantitative 
measure of cell viability in culture and functions 
as a quantitative assay. It is a sensitive assay 
and measures the growth rate of cells, by virtue 
of a linear relationship between cell activity 
and absorbance. The MTT reagent is a mono-

Scheme 1: The entry of nanoparticles (NPs) into cells was observed by employing FluoDot NPs labelled with 
FITC, while the toxicity at increasing NP concentrations was assessed using the MTT cytotoxicity assay and flow 
cytometry.
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InvitrogenTM propidium iodide was purchased from 
Thermo Fisher Scientific (Waltham, MA, USA). 35 
mm glass bottom dish with No 1.5 coverslip was 
purchased from MatTek Life Sciences (Ashland. 
MA, USA) and 96-well tissue culture plate was 
purchased from Falcon BD Bioscience (San Jose, 
CA, USA).

Synthesis of FluoDot24-FITC
BSA-derived nanoparticles were prepared by 

following methods as reported in our collaborator’s 
lab [35]. In brief, dodecanedioic acid was activated 
with EDC and coupled with the amine groups of BSA 
(50 mM phosphate buffer, pH 8.0), labeled with 
FITC, and the resulting FluoDot24-FITC particles 
were purified by dialysis (25 kDa molecular weight 
cut off) against 50 mM phosphate buffer (pH 8.0). 
Formation of the nanoparticles was confirmed 
by dynamic light scattering, and agarose gel 
electrophoresis, as described in the thesis.

Nanoparticle uptake assay
The protocol outlined by Da silva, et al. was 

modified and appliedhere [36]. HeLa cells were 
grown in 35 mm No. 1.5 coverslip bottom dishes 
from MatTek with clear glass bottom. The cells 
were incubated at 37 °C for 24 hours. The cells 
were then treated with FITC labeled FluoDot NPs at 
10 ug/ml concentration and incubated at 30 min, 1, 
6, 12 and 24 hours. At the end of each incubation 
period the NPs were rinsed out using PBS and 
the cells were stained with CellMaskTN Deep red 
Plasma Membrane stain for 10 min at 37 °C. After 
the incubation, the staining solution was removed 
and rinsed with PBS three times. This was followed 
by addition of a sufficient volume of Hoechst 33342 
working solution to completely cover the sample. 
An aluminum foil was placed over the sample 
to protect it from light and incubated at room 
temperature for 5-10 minutes. The live cells image 
was taken immediately using a Nikon A1R Spectral 
Confocal microscope equipped with a 60X objective 
lens. Imaging was conducted at an excitation/
emission wavelength of 460/490 nm for FITC and 
649/666 nm for the CellMaskTN Deep red Plasma 
Membrane stain.

In vitro cytotoxicity of FluoDot determined 
using an MTT assay

The in vitro cytotoxicity of the FluoDot NPs were 
determined by using TACS MTT Cell Proliferation 
Assay according to the manufacturer's instruction, 

tetrazolium salt comprising of a positively charged 
quaternary tetrazole ring core containing four 
nitrogen atoms surrounded by three aromatic 
rings including two phenyl moieties and one 
thiazolyl ring which reduces viable cells containing 
NAD(P)H-dependent oxidoreductase enzymes 
to formazan [27-29]. This reagent specifically 
evaluates mitochondrial activity in living cells, as 
mitochondrial dehydrogenase enzymes cleave 
the tetrazolium ring resulting in the formation of 
purple formazan, soluble in dimethyl sulfoxide 
(DMSO). This compound's fluorescence intensity 
allows for the quantification of cell proliferation, 
as it can penetrate both the cell membrane and 
the mitochondrial inner membrane of viable cells, 
producing measurable results.

In our investigation, we utilize flow cytometry 
to evaluate the viability of cell populations. 
This technique operates on the principle that 
dead cells display a loss of membrane integrity, 
distinguishing them from live cells [30]. Various 
dyes are employed for this purpose, each designed 
to selectively interact with either live or dead 
cells. Notably, propidium iodide, a dye commonly 
utilized in flow cytometry, is specifically adept at 
detecting dead cells due to its inability to penetrate 
intact membranes of live cells [31-34]. Its dual 
positive charge effectively prevents entry into live 
cells, making it an invaluable tool for discerning 
cell viability within heterogeneous populations. By 
leveraging the specificity of propidium iodide and 
the analytical power of flow cytometry, we aim 
to precisely characterize the cellular response to 
nanoparticle exposure and elucidate key insights 
into their biological effects.

Materials and Methods
Materials

For our study, HeLa cells (Human cervical 
carcinoma cells) (ATCC, CCL-2) were purchased 
from ATCC (Manassas, VA, USA). GibcoTM 
Dulbeco’s Modified Eagles Medium (DMEM), 
GibcoTM Antibiotic-Antimycotic (amphotericin B, 
penicillin, streptomycin), GibcoTM fetal bovine 
serum (FBS), GibcoTM phosphate buffered saline 
and GibcoTM trypsin-EDTA was purchased from 
Thermo Fisher Scientific (Waltham, MA, USA). 
TACS MTT Cell Proliferation Assay was purchased 
from R&D Systems (Minneapolis, MN, USA, 4890-
050-K). InvitrogenTM Hoechst 33342, InvitrogenTM 
CellMask™ plasma membrane stains and 



• Page 4 of 10 •Sakhrie et al. Int J Nanoparticles Nanotech 2024, 9:044 ISSN: 2631-5084 |

Citation: Sakhrie A, Ding J, Kalluri A, Liu C, Kumar CV, et al., (2024) In-Vitro Cytotoxicity Assessment and Cellular Uptake Study of Novel 
FluoDot Nanoparticles on Human Cervical Carcinoma Cells. Int J Nanoparticles Nanotech 9:044

FluoDot nanoparticles were assessed using dynamic 
light scattering (DLS), revealing a size ranging 
from 9 nm to 11 nm. Further characterization of 
FluoDot's morphology and size was conducted 
via transmission electron microscopy (TEM), 
confirming a size of approximately 10 nm with a 
well-defined size distribution and predominantly 
spherical shape. Zeta potential measurements 
indicated a net charge of -20 mV. Storage of the 
nanoparticles in solution phase at 4 °C maintained 
the secondary structure, with 73% retention 
observed after exposure to steam sterilization [35].

Cellular uptake of FITC-labeled FluoDot using 
Confocal Microscopy

The uptake assay revealed that the HeLa cells 
were able to take in the FluoDot NPs into the cells. 
The NPs were internalized in a time dependent 
manner. After the FITC-labeled NPs were added 
to the cells (10 µg/ml), the fluorescent images 
were captured at different intervals to analyze the 
uptake process. It was observed that the NPs were 
localized in the surface of the plasma membrane 
of the cells after 30 mins of incubation (Figure 1). 
The cell membrane was stained with CellMaskTN 
Deep red Plasma Membrane stain which helps to 
differentiate the FITC-labeled NPs that are attached 
to the cell surface with those that are inside the 
cells. Following an hour of incubation, the NPs 
were internalized by endocytosis into the cells and 
were no longer found in the plasma membrane. On 
further incubation of up to 24 hours, we found that 
most of the fluorescence appears to be inside the 
cells suggesting that NPs were aggregated near the 
nucleus and not dispersed around the cytoplasm 
showing evidence that the NPs were taken up by 
the cells.

In vitro cell cytotoxicity study of FluoDot NP 
using MTT assay

The cell viability after treatment of the cells with 
different concentrations of the NPs were estimated 
using a commercially available MTT assay. The 
percentage of cell viability was calculated using the 
formula:

% 100Mean Optical Density of SamplesCell viability
Mean Optical Density of Media Control

= ×

Where optical density is the measure of 
absorbance of the samples. The optical densities 
of the samples after different treatments of the 
NPs were compared with the cells containing only 

in HeLa cells. Briefly, the cells were seeded in 96-
well tissue culture plate at a density of 5000 cells/
well and maintained overnight at 37 °C with 0.1 mL 
of feeding medium (90% Dulbecco's and 10% fetal 
calf serum containing 1% antibiotic-antimycotic). 
After the incubation, the wells were treated with 
NPs of concentration ranging from 200 µg/ml - 
6.25 µg/ml. The cells were then incubated for 24 
and 48 hours. The MTT reagent was added to all 
the wells after each incubation period and then 
kept for 4 hours at 37 °C. 100 µl of the detergent 
reagent was finally added and the cells were kept 
at RT overnight. After the incubation was over, the 
absorbance in each well was read at 570 nm using a 
microplate reader (Molecular Devices SpectraMax 
Plus 384). The controls were cell culture medium, 
BSA and dodecanedioic acid.

Cell cytotoxicity study using flow cytometry
Cells were seeded in 12-well plates at a density 

of 2-2.5 × 104 cells per cm2 and cultured for 24 
hours at 37 °C. The cells were washed with fresh 
media and incubated with various concentrations 
of NPs, as mentioned in MTT assay, prepared in 
the culture media. After the treatment, cells were 
washed twice with 1× PBS to remove residual NPs 
both in culture media and on the cell surfaces. The 
media was saved as it contained dead and mitotic 
cells. The cells were detached using trysin-EDTA and 
the cells were harvested by centrifugation at 500g 
for 5 min. The harvested cells were resuspended 
in PI in appropriate buffer and incubated at room 
temperature for 15 minutes in the dark. The 
cells were analyzed using BD FAC Symphony A5 
SE equipped with BD FACS Diva software, at an 
excitation of 488 nm.

Statistical analysis
The MTT assay data was expressed as mean ± 

standard deviation and the multigroup comparisons 
of the means were carried out through a one-
way analysis of a variance (ANOVA) test and a p 
< 0.05 was considered as statistically significant. 
Experiments were independently repeated three 
times at least in triplicate. Error bars in the graphical 
data represent standard deviations. Results were 
statistically analyzed using GraphPad Prism v10 
(GraphPad Software, San Diego, CA, USA).

Results
Characterization of FluoDot nanoparticles

The hydrodynamic dimensions of the resulting 
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components of the NPs. Based on the cytotoxicity 
assay, the IC50 of the NP was estimated after 24 
hours of incubation. The IC50 concentration was 
calculated to be 26.4 µg/ml (Figure 3b).

In vitro cell cytotoxicity study of FluoDot NP 
using flow cytometry

Flow cytometry provides a rapid and more 
accurate method for measuring viable cells, 
by differentiating the dead cells from the cell 
suspension. One of the methods to assess the cell 
viability is by the use of dye like propidium iodide 
(PI). PI is a membrane impermeant dye which 
binds to double stranded DNA by intercalating 

media, without any treatment, maintained as 
100%. The HeLa cells were treated with different 
concentrations of FluoDot NPs from 200 µg/ml 
- 6.25 µg/ml at different time intervals (24 hours 
and 48 hours). Figure 2 shows the cytotoxicity 
analysis result of the MTT assay. After 24 hours 
of treatment, the cells showed a significant cell 
death at a concentration of 25 µg/ml (Figure 2b). 
Upon further incubation of 48 hours, the significant 
increase in cell death was seen in the cells treated 
with concentration of 50 µg/ml of the NP (Figure 2b). 
As shown in Figure 3a, the cells were also treated 
with BSA and DDDA, both at a concentration of 200 
µg/ml and no cytotoxicity was detected for the two 

Figure 1: Confocal images of HeLa cells after incubation with FITC-labeled FluoDot NPs (10 µg/ml) at different 
time intervals (30 min, 1, 6, 12 and 24 hours). The nucleus and cell membrane were stained with Hoechst and 
CellMaskTN Deep red Plasma Membrane stain, respectively. The internalization of the NP was confirmed by 
using Nikon A1R Spectral Confocal microscope using × 60 oil immersion lens and analyzed using Image J. Scale 
bar: 32 µm.
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Figure 2: Cell viability of FluoDot NP treated HeLa cells using MTT assay. Cells were treated with 200, 100, 50, 
25, 12.5 and 6.25 µg/ml of the NP and incubated at 24 (a) and 48 hours (b). *P < 0.05, **P < 0.01, ***P < 0.001 
and ****P < 0.0001.

Figure 3: (a) Cell viability assay for media, BSA and DDDA control. (b) IC50 cytotoxicity evaluation of FluoDot 
in HeLa cells using MTT assay. The IC50 of the NP was calculated as 26.4 µg/ml using GraphPad Prism v10 
software. Data points represent n = 3 experiments with triplicates for each experiment ± standard deviation.

The flow cytometry findings indicate that the cell 
viability decreases as the concentration of the NP is 
increased from 3.125 µg/ml to 200 µg/ml indicating 
the dose-dependent cytotoxicity of FluoDot NP as 
confirmed by MTT assay (Figure 4).

Discussion
The results of the cellular uptake studies using 

confocal microscopy revealed time-dependent 
internalization of the NPs into HeLa, with evidence 
of agglomeration near the nucleus. The initial 
localization of NPs on the surface of the plasma 
membrane after 30 minutes of incubation suggests 

between base pairs. The excitation of PI occurs at 
488 nm. A dot plot was established to detect the 
size (forward scatter [FSC]) and granularity (side 
scatter [SSC]) using linear scale. The voltage and 
gain were adjusted with treated and untreated 
samples in such a way that all the cells (live and 
dead) were detected based on FSC and SSC and 
exclusion gates were set to exclude cellular debris. 
The PI-stained dead cells, which fluoresce brightly, 
were detectable on the right-hand side of the plot. 
Each sample were run, and data was acquired for 
at least 5000 events. The data is represented as dot 
plot with each dot representing an individual cell. 
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toxicity to the cells [44]. On exposure to increasing 
concentrations of NPs, it led to a corresponding 
decrease in cell viability, with significant cytotoxic 
effects observed at concentrations of 25 µg/
ml after 24 hours and 50 µg/ml after 48 hours of 
treatment. However, the cell viability percentage at 
100 µg/ml is ~70% which is well above the limit of 
ISO 10993-5: 2009 (Biological evaluation of medical 
devices part-5: Tests for in vitro cytotoxicity) [45] 
which states that the reduction of cell viability by 
more than 30% is considered toxic. Furthermore, 
control experiments with individual components 
of the NPs, namely BSA and DDDA, did not show 
any significant cytotoxicity, suggesting that the 
observed effects are specific to the NPs themselves. 
Our findings also highlight the importance of factors 
such as size, shape, surface charge, composition of 
the NPs and also on the cell type used in mediating 
the cytotoxicity. While the exact mechanisms 
underlying NP-induced cytotoxicity remain to be 
fully elucidated, our results suggest that smaller-
sized NPs may exhibit higher toxicity, possibly 
due to enhanced cellular uptake or interactions 
with intracellular components. This hypothesis 
is supported by previous research indicating a 
correlation between NP size and cytotoxicity 
[46-53]. Additionally, the determination of the 

an initial interaction between the NPs and the cell 
membrane. The utilization of CellMaskTN Deep Red 
Plasma Membrane stain facilitated the clarity in 
tracking the cellular uptake process. The aggregation 
of NPs near the nucleus, rather than dispersion 
throughout the cytoplasm, indicates specific cellular 
targeting or trafficking mechanisms that direct 
the NPs towards subcellular compartments. This 
finding supports the hypothesis that the cellular 
uptake of NPs is not merely a passive process but 
rather involves active interactions and intracellular 
transport mechanisms. In addition, the shape of the 
NP has a tremendous effect on its uptake by cells. 
Research indicates that the spherical shaped NPs 
show greater cellular uptake than NPs with other 
shapes [37-42]. Moreover, the cellular uptake 
of the NPs is influenced by the surface charge 
on the NPs. Studies have demonstrated that the 
anionic NP are internalized by HeLa cells through 
both clathrin-mediated endocytosis and caveolae-
mediated endocytosis [43].

In summary, exposure of the NPs to the HeLa 
cells showed dose-dependent inhibition of growth 
of cells which in turn resulted in reduction of viability 
percentage of the cells. These results indicate that 
higher the concentration of the NP higher the 

Figure 4: Quantification of cell cytotoxicity to FluoDot NP using Flow cytometry by staining cells using propidium 
iodide. HeLa cells were treated with different concentrations of FluoDot NPs (200 µg/ml - 3.125 µg/ml) and 
incubated for 24 hours. Dot plot shows cell count on Y-axis and PI positive cells on X-axis.
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