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Abstract
This paper investigates the capabilities of the 4-axis SCARA ABB IRB 930 robot, a pivotal machine in 
industrial automation renowned for its high payload capacity. Emphasizing cycle time and payload 
capacity, the exceptional motion control and productivity features of the IRB 930 are highlighted. 
A comprehensive mathematical model for kinematics and dynamics is presented, implemented in 
MATLAB for accuracy. The versatility of the IRB 930 across various applications, from assembly to 
screw driving, makes it an ideal subject for kinematic analysis. Detailed discussions cover mathematical 
modelling, the methodology for deriving the Jacobian, and dynamic analysis, ultimately leading to 
a specific control model for this robot. This research enhances understanding of the IRB 930 while 
also contributing universally applicable methodologies for diverse robotic platforms. Findings ranging 
from forward kinematics to dynamic control propel advancements in the field of robotics and control 
methodologies.
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present and in the future. One pivotal aspect that 
profoundly influences the effectiveness of these 
robots is their cycle time and payload capacity, key 
parameters intricately linked to overall productivity 
[2]. A robot’s payload capacity, defined as the 
amount of mass its wrist can support, extends 
beyond the mere weight of workpieces handled by 
the robot. It encompasses the weight of any end-of-
arm tooling (EOAT) and bracketing integrated with 
the robot wrist. Simultaneously, the robot cycle 
time, representing the duration it takes for a robot 
to complete one full cycle of its programmed task, 
includes both the value added time when the robot 
is actively moving or performing the operation 

Introduction
The evolution of industrial automation has 

ushered in a new era of efficiency and precision, 
prominently led by programmable manipulators 
known as industrial robots. These sophisticated 
machines navigate predefined sequences of 
motions, exhibiting the remarkable ability to execute 
tasks with unwavering precision over prolonged 
periods [1]. The contemporary landscape of 
industrial production places an escalating demand 
on the flexibility of manufacturing processes, 
necessitating a closer examination of the design 
and adaptability of robotic systems both in the 
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In the present paper, a thorough mathematical 
model for kinematics and dynamics of 4 axes SCARA 
IRB 930 robot is presented. This model encompasses 
the full mathematical development for both forward 
and inverse kinematic equations, as well as dynamic 
equations of motion. Additionally, the utilization of 
the MATLAB environment to implement and verify 
the mathematical models presented. Specifically, the 
Symbolic Math Toolbox within MATLAB is employed 
for deriving the complex mathematical formulations 
required for kinematic and dynamic analysis. By 
leveraging the capabilities of MATLAB, the paper 
ensures rigorous analysis and accurate verification 
of the developed models, enhancing their reliability 
and usefulness for researchers and engineers. 
The integration of MATLAB not only facilitates 
the implementation process but also enables 
comprehensive exploration and understanding of 
the behaviour and capabilities of the ABB IRB 930 
robot across various operational scenarios.

The paper is thoughtfully organized for a 
comprehensive exploration of the 4-axis SCARA ABB 
IRB 930 robot. In Section 2, the discussion begins 
by introducing the robot and diving deep into the 
mathematical modelling for its kinematics. Moving 
on to Section 3, the methodology for deriving the 
Jacobian of the robotic manipulator is outlined. 
Additionally, the paper discusses singularity 
analysis and introduces a velocity propagation 
model. In Section 4, the focus shifts to a dynamic 
analysis of the robot, drawing insights from the 
established mathematical model. Building upon this 
groundwork, Section 5 elaborates on the control 
model crafted specifically for the 4-axis SCARA ABB 
IRB 930 robot. Concluding the study in Section 6, 
a synthesis of key findings and insights garnered 
throughout the investigation is offered. This 
contribution to the research field is significant as it 
provides a comprehensive mathematical framework 
for analyzing the kinematics and dynamics of the 
ABB IRB 930 robot, a pivotal component in modern 
industrial automation. This structured approach 
ensures a systematic and thorough examination 
of the robot’s kinematics, dynamics, and control 
model, providing valuable insights into its behavior 
and capabilities across various operational scenarios.

Kinematic Analysis
Forward kinematics

Forward kinematics in robotic manipulators 

and any non-value-added wait time. Together, 
these factors contribute significantly to the overall 
effectiveness and productivity of industrial robotic 
systems [3].

In the realm of industrial robotic solutions, the 
IRB 930 SCARA stands out as a high-payload robot 
with a capacity of 12-kg or 22-kg. This exceptional 
SCARA robot enhances throughput by up to 10%, 
demonstrating class-leading speed, accuracy, 
internal cabling, and extraordinary downward force 
[4]. The IRB 930’s superior cycle time and payload 
capacity make it a noteworthy choice for optimizing 
industrial processes, showcasing its process in 
delivering enhanced efficiency and productivity.

The IRB 930 SCARA, a versatile powerhouse 
designed for fast point-to-point applications, 
demonstrates exceptional strength in handling 
substantial payloads. Its adaptability extends 
to delicate tasks through the integration of 
sophisticated tools and grippers. With an 
impressive cycle time of 0.38 seconds and a 
remarkable repeatability deviation position of only 
0.01 mm, the IRB 930 excels in motion control, 
empowering heightened hourly production rates 
while maintaining high-quality manufacturing 
standards. Notably, its maximum downward force 
of 250N sets it apart, providing more than double 
the average screw driving capacity of other robots. 
The IRB 930’s spatial efficiency, saving up to 20% of 
the typically required space above the upper arm, 
enhances overall flexibility in industrial setups. 
Figure 1 presents a visual representation of the IRB 
930 model.

Figure 1: Visual representation of the 4-axis SCARA 
IRB 930 manipulator.
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(DH) table for the robot manipulator, involves 
the determination of the transformation matrix. 
MATLAB allows for the implementation of Denavit-
Hartenberg (DH) parameters into symbolic variables, 
representing ai, αi, di, and θi. These parameters are 
fundamental in defining the geometric and kinematic 
characteristics of the manipulator’s links and joints. 
With the DH parameters defined symbolically, 
MATLAB assists in constructing the individual 
transformation matrices Ti using the DH convention. 
The transformation matrix from the (i − 1)-th joint to 
the i-th joint, represented as Ti, involves trigonometric 
functions of the joint variables and DH parameters. 
Additionally, MATLAB facilitates the systematic 
multiplication of these individual transformation 
matrices to compute the total transformation matrix 
Ttotal. By sequentially multiplying the transformation 
matrices corresponding to each joint, MATLAB 
provides the complete kinematic relationship from 
the robot’s base to its end-effector.

0 0 1 2 3
4 1 2 3 4T T T T T= ⋅ ⋅ ⋅ 				            (1)

The transformation matrix from the (i - 1)-th 
joint to the i-th joint is represented as

1

cos( ) sin( )
cos( ) sin( )

0 sin( ) cos( )
0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

c s s a c
s c c a s

T
d

α α
α α

α α
−

− 
 − =
 
 
 

      (2)

Where: 

cos( )i ic θ=

sin( )i is θ=

The individual matrices from the base to the end 
effector are:

1 1 1 1

1 1 1 10
1

0
0

0 0 1 0
0 0 0 1

c s a c
s c a s

T

− 
 
 =
 
 
 

			             (3)

involve the conversion of kinematic information 
from the joint variable space to the Cartesian 
coordinate space. This process enables the 
determination of the end-effector’s position and 
orientation based on a given set of joint variables 
[5]. Figure 2 visually illustrates the transformation 
process integral to forward kinematics.

The approach to finding the solution for forward 
kinematics follows a systematic progression, 
moving link by link using Denavit-Hartenberg 
notation and frames. In the DH convention, the 
link parameters, namely αi and ai, remain fixed and 
are associated with the geometric characteristics 
of the manipulator. The angle αi represents the 
rotation between zi−1 and zi about xi−1, while ai 
denotes the distance along xi−1 between zi−1 and zi. In 
contrast, the joint parameters, θi and di, introduce 
variability into the kinematic model. Among 
these joint parameters, one remains constant, 
providing stability to the system, while the other 
is variable and adjusts to accommodate different 
configurations. Specifically, θi represents the angle 
between xi−1 and xi about zi−1, while di denotes 
the distance along zi−1 between xi−1 and xi. Figure 
3 presents the kinematic diagram for the SCARA 
manipulator. The DH parameters for the SCARA 
manipulator are obtained from the kinematic 
diagram and represented in Table 1.

The subsequent stage in forward kinematics, 
following the derivation of the Denavit-Hartenberg 

Figure 2: Transformation for forward kinematics.

Table 1: DH table for ABB 930.

Link ai 𝛼i di θi

1 a1 0 0 Θ1

2 a2 180 0 Θ2

3 0 0 d3 0

4 0 0 d4 Θ4
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Figure 3: Kinematic diagram of ABB 930.

Figure 4: Transformation for inverse kinematics.
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4
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The total transformation matrix is

0
4

0 0 0 1

x x x x

y y y y

z z z z

n s a o
n s a o

T
n s a o

 
 
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 
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			           (7)
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		                       (4)
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d
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 
 
 
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position information of the end-effector.

Inverse kinematics
Inverse kinematics is the reverse process 

of forward kinematics, involving the kinematic 
transformation from Cartesian coordinate space 
to joint variable space [6]. In this method, the joint 
variables are determined based on the desired 
configuration of the end effector.

The mathematical representation involves 
the search for these joint variables, with their 
determination entailing the solution of a set of 
nonlinear coupled algebraic equations. In practice, 
computer-controlled robots are predominantly 
actuated in joint variable space, whereas the 
objects to be manipulated are typically expressed 
in a Cartesian coordinate frame. To determine the 
inverse kinematic solution, the total transformation 
matrix 0

4T  is considered as

11 12 13

21 22 230
4

31 32 33

0 0 0 1

x

y

z

r r r o
r r r o

T
r r r o

 
 
 =
 
 
 

Compound expansions for the total 
transformation matrix:

12 4 12 4xn c c s s= + 	 (Normal vector)	         (8)

12 4 12 4xs s c c s= − 	 (Sliding vector)	         (9)

0xa = 		  (Approach vector)	       (10)

1 1 2 12xo a c a c= + 	 (Position vector)	       (11)

12 4 12 4yn s c c s= − 	 (Normal vector)	      (12)

12 4 12 4ys s s c c= − − 	 (Sliding vector)	      (13)

0ya = 		  (Approach vector)	       (14)

1 1 2 12yo a s a s= + 	 (Position vector)	      (15)

0zn = 		  (Normal vector)	      (16)

0zs = 		  (Sliding vector)	        (17)

1za = − 		  (Approach vector)             (18)

3 4zo d d= − − 	 (Position vector)	      (19)

The total transformation matrix provides 
the basis for obtaining the solution to forward 
kinematics. This solution is derived by comparing 
the total transformation matrix with the reference 
matrix, which represents the orientation and 

Figure 5: Projection of manipulator.
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delves into the intricate relationship between joint 
velocities and end-effector velocities. At its core 
lies the Jacobian matrix, a mathematical tool that 
encapsulates this relationship, providing a means to 
analyze and control the motion of robotic systems.

The Jacobian matrix plays a pivotal role in both 
forward and inverse differential kinematics. In 
forward differential kinematics, it enables predicting 
the impact of small changes in joint positions on the 
end-effector’s position and orientation. Conversely, 
in inverse differential kinematics, it guides the 
adjustments in joint positions needed to achieve a 
desired end-effector motion [7]. Both forward and 
inverse differential kinematics are instrumental 
in the broader field of robotics, offering distinct 
perspectives and practical applications. They find 
relevance in tasks such as trajectory planning and 
real-time control, contributing to the efficient and 
precise movement of robotic systems. Figure 6 
illustrates the relationship between differential 
kinematics.

Forward differential kinematics: Forward 
Differential Kinematics is a fundamental concept 
in robotics that aims to elucidate how minute 
adjustments in joint positions (dθ) translate into 

The joint variables θ1,θ2, and θ4 are determined 
as follows: 

1 2 4 11 12tan 2( , )a r rθ θ θ α+ − = =

Then, projecting the manipulator on the x0− 
y0 plane, the other values can be found. Figure 5 
illustrates the projection process.

( )2 2 2tan 2 , 1a c cθ = ± −

Where 
2 2 2 2

1 2
2

1 22
x yo o a a

c
a a

+ − −
=

1 1 2 2 2 2tan 2( , ) tan 2( , )x ya o o a a a c a sθ = − +

To determine θ4,

4 1 2 1 2 11 12tan 2( , )a r rθ θ θ α θ θ= + − = + −

And 3 4zd o d= + .

Thus, the inverse kinematic solution has been 
obtained from the geometrical method.

Differential kinematics
Differential kinematics serves as the crucial 

link connecting joint movements to the resulting 
motion of a robotic manipulator’s end-effector. 
Also referred to as velocity kinematics, this concept 

Figure 6: Relationship between differential kinematics.
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positions.

J−1 is the inverse of the Jacobian matrix.

dX is the differential change in the end-effector 
position and orientation.

Jacobian
In robotics, the Jacobian matrix (J) plays an 

important role in the analysis of serial link robot 
manipulators [8]. The joints are categorized as 
either revolute or prismatic, with the joint type 
represented by ρi (1 for revolute, 0 for prismatic). 
The orientation vector ( )

0
1iz −  is determined by

( ) ( )
0 0

1 1i iz R k− −= ⋅ 				         (22)

Where ( )0
0 0,0,1 Tz k= = .

The Jacobian matrix is structured into two halves: 
The upper half (Jv) Corresponding to angular velocities 
and the lower half (J𝜔) corresponding to angular 
velocities. The linear velocity Jacobian (Jv) is further 
divided into columns (

ivJ ) for each joint. For revolute 
joints, 

ivJ is expressed as ( )1 1i n iz o o− − × −  , while for 

prismatic joints, 
ivJ  simplifies to [ ]1iz − .

Simultaneously, the angular velocity Jacobian 
(J𝜔) is structured similarly, with columns (

i
Jω ) for 

each joint. For revolute joints, 
i

Jω  is given by [ ]1iz −

, and for prismatic joints, 
i

Jω  is [0]. The complete 
Jacobian matrix (J) is then formed by concatenating 
Jv and J𝜔 resulting in a matrix of the form

[ ]1 2 ...v
n

w

J
J J J J

J
 

= = 
 

			         (23)

For revolute joints, Ji is expressed as

( )1 1

1

i n i

i

z o o
z

− −

−

 × −
 
 

				           (24)

And for prismatic joints, Ji takes the form

1

0
iz − 

 
 

					           (25)

This comprehensive structure of the Jacobian 
Matrix facilitates the mapping of joint velocities 
to end-effector velocities, crucial of the kinematic 
analysis of robotic manipulators.

In the case of a SCARA manipulator where joints 
1, 2, and 3 are revolute, and joint 3 is prismatic, the 
robot has a parallel link between joints 3 and 4. i.e., 
o4− o3 is parallel to Z3, therefore,

( )( )3 4 3Z × 0o o− = ,

corresponding changes in the end-effector’s 
position and orientation (dX). The objective is 
to mathematically formulate and simulate the 
manipulator’s behavior by analyzing its velocity 
ratios. dX signifies the differential change in the 
end-effector’s position and orientation, providing 
insights into how the manipulator responds to 
alterations in joint configurations. The Jacobian 
matrix (J) acts as a bridge, representing the 
sensitivity of the end-effector motion to variations 
in joint velocities.

The practical application of forward differential 
kinematics is manifold. It finds extensive usage 
in predicting the motion of the end-effector, 
particularly when confronted with incremental 
adjustments in joint positions. This predictive 
capability is crucial for tasks such as trajectory 
planning, where understanding the relationship 
between joint variations and end-effector motion is 
imperative for devising optimal paths. The general 
form of forward differential kinematics is given 
below:

.dX J dθ= 					           (20)

Where:

dX is the differential change in the end-effector 
position and orientation.

J is the Jacobian matrix.

dθ is the vector of differential changes in joint 
positions.

Inverse differential kinematics: Inverse 
Differential Kinematics establish a clear connection 
between incremental changes in the end-effector’s 
position and orientation (dX) and the corresponding 
adjustments needed in joint positions (dθ). This 
approach plays a crucial role in the velocity-level 
control of manipulators. The primary application 
of inverse differential kinematics lies in the precise 
control of a robot’s joints to achieve specific end-
effector motions. This method proves especially 
valuable in closed-loop control systems, where 
real-time feedback from the actual end-effector 
motion is utilized to regulate the robot’s behavior.

The mathematical expression for inverse 
differential kinematics is given below:

1d J dXθ −= ⋅ 				          (21)

Where:

dθ is the vector of differential changes in joint 
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Two primary types of singularities may occur in 
the workspace of a robot manipulator. Workspace 
Boundary Singularities manifest at the boundaries 
of the robot’s workspace, and detecting and 
understanding these singularities are crucial 
for optimizing the robot’s operational range. 
Additionally, Workspace Interior Singularities can 
occur within the interior of the robot’s workspace, 
and identifying and managing these singularities 
are essential for ensuring smooth and predictable 
robot movements during operation. One effective 
method for identifying and analyzing singularities is 
through the use of the Jacobian matrix.

11 12
0

21 22

|p

J J
J J J

J J
 

 = =   
 

 	                   (28)

From Figure 7, it is evident geometrically that 
the only singularity of the SCARA arm occurs when 
the elbow is fully extended or fully retracted. This 
observation aligns with the fact that the portion of 
the Jacobian governing SCARA arm singularities is 
given as follow:

1 1 2 12 1 1 2 12

11 1 12 1 12

0
0

0 0 1

a s a s a c a c
J a s a c

− − + 
 = − 
 − 

	        (29)

The rank of J11 will be less than three precisely 
whenever 1 4 2 3 0α α α α− = .

S2 = 0, which implies θ2 = 0, π.

In summary, the singularities of the SCARA arm 
occur when the elbow is fully extended or fully 
retracted, corresponding to the conditions S2 = 0 
and 1 4 2 3 0α α α α− = .

Velocity Propagation
The systematic analysis of velocity propagation 

through the various joints of a robotic arm is 
required for understanding the dynamic behavior 
of the manipulator, as it is crucial for optimizing 
the design and control of robotic systems. The 
process involves forward propagation, where joint 
velocities and accelerations are computed, either 
starting from the base link and progressing towards 
the end-effector or vice versa [10].

For prismatic joints, the angular and linear 
velocities (ω and V), as well as angular and linear 
accelerations (α and a), are determined through 
mathematical expressions that account for the 
rotational and translational aspects of joint motion. 
However, for rotary joints, these equations are 

implying that the rotational joint 3 does not 
contribute to the end-effector motion in the 
direction of o4− o3. Therefore, the modified Jacobian 
matrix is represented as

( ) ( )0 4 0 1 4 1 2

0 1 3

0
0

z o o z o o z
J

z z z
 × − × −

=  
 

     (26)

1 1

1 1 1

1 1 2 12

2 1 1 2 12

1 1 2 12

4 1 1 2 12

3 4

,
0

,
0

a c
o a s

a c a c
o a s a s

a c a c
o a s a s

d d

 
 =  
  

+ 
 = + 
  

+ 
 = + 
 − 

0 1 1 2 3,z z k z z k= = = = −

Finally, by performing the indicated calculations, 
the Jacobian of the SCARA manipulator is

1 1 2 12 2 12

1 1 2 12 2 12

0 0
0 0

0 0 1 0
0 0 0 0
0 0 0 0
1 1 0 1

a s a s a s
a c a c a c

J

− − − 
 + 
 −

=  
 
 
 

− 

	        (27)

Singularities
Singular configurations refer to specific robot 

poses where the end effector experiences a 
reduction in its degrees of freedom, rendering 
it inferior to the typical operational dimensions. 
Singularities occur under certain conditions. In the 
case of prismatic joints, singular configurations 
may arise when two axes become parallel, causing 
a loss of independence in the kinematic equations 
and resulting in a reduction of the end effector’s 
degrees of freedom (DOF). Similarly, for revolute 
joints, singularities can occur when two axes 
become identical, leading to a linear dependence 
in the kinematic equations and restricting the 
freedom of movement for the end effector [9]. 
Singular configurations must be carefully avoided, 
as they can lead to theoretical challenges, most 
notably, the velocity required to move the end 
effector becomes theoretically infinite.
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Figure 7: Singularity analysis of SCARA manipulator.

equations are systematically applied to compute 
the velocities for each joint, progressively moving 
from the base towards the end-effector.

1 2
1 2 2 1

0 0
0 ,
0 0

V V a θ
   
   = = −   
      

 	                                    (34)

( )
( )

2 1 4
3 4

3 2 1 4 2 1 4

3 3

0 sin
, cos

a
V a V a

d d

θ θ
θ θ θ

 − 
  = − = −  
     



 

 
	        (35)

1 2
1 2

1 2 1

0 0
0 , 0ω ω
θ θ θ

   
   = =   
   −     

                                     (36)

3 4
3 4

2 1 2 1

0 0
0 , 0ω ω

θ θ θ θ

   
   = =   
   − −      

		         (37)

The final linear and angular velocity of the end-
effector with respect to the base frame are

0
4

1 2

0
0ω

θ θ

 
 =  
 −  

			                       (38)

modified to incorporate the joint angle (θ).

The angular velocity for a rotary joint through 
forward propagation is given by

1 1
1

1

0
0i i i

i i i

i

Rω ω
θ

+ +
+

+

 
 = +  
  

	                                   (30)

For prismatic joints, the angular velocity is given 
by

1 1
1

i i i
i i iRω ω+ +
+ = 				          (31)

Similarly, the linear velocity for both rotary and 
prismatic joints through forward propagation is 
given by

1 1
1 1( )i i i i i

i i i i iV R V Pω+ +
+ += + × 			         (32)

1 1
1 1

1 1

0
0i i i i i

i i i i iV R V P
d

ω+ +
+ +

+

  
  = + × +  
    



		       (33)

In implementing the mathematical formulations 
for velocity propagation within a MATLAB 
environment, the joint parameters such as lengths 
ai, joint angles θi, and joint velocities iθ  are defined. 
Using these parameters, the forward propagation 
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dynamics and inverse dynamics is illustrated in 
Figure 8.

Forward dynamics simulate or analyze the 
manipulator’s motion, while inverse dynamics 
address the control aspect of manipulating the 
robot. Two primary approaches to obtaining 
these equations are the energy-based approach, 
such as the Lagrange-Euler method, and the force 
approach, such as the Newton-Euler method.

Lagrange-Euler method
To determine the Euler-Lagrange equations, the 

Lagrangian of the system has to be formed, which 
is the difference between the kinetic energy and 
the potential energy [11].

. .K E P E= −L

Where:

L  : Lagrangina

K.E: Kinetic energy 

P.E: Potential energy

Using the Lagrangian, the equation of motion 
can be obtained by the relation:

d
dt q q

τ
 ∂ ∂

− = ∂ ∂ 
L L

To find the Lagrange position coordinates 
((x1,y1),…,(xn,yn)), the total kinetic energy of the 
robot manipulator can be found by:

2 2

1

1. ( )
2

n

i i i
i

K E m x y
=

= +∑  

The potential energy can be obtained by:

( )
( )

2 1 1 2
0

4 2 1 1 2

3

sin
cos

a
V a

d

θ θ θ
θ θ θ

 − +
 = − + 
 − 






			         (39)

This final velocity of the end effector is critical 
for parameters that characterize the overall motion 
of the robotic manipulator. This comprehensive 
analysis of velocity propagation forms the basis 
for further advancements in manipulator design, 
control strategies, and overall performance 
optimization in diverse applications, ranging from 
industrial automation to cutting-edge robotics.

Dynamic Modelling
Dynamic modelling involves studying the 

changes in the state of a robotic system over time. 
The dynamic equations can be expressed as

( ) ( , )M q q n q qτ = + 

Where τ is the torque, M(q) is the inertia matrix, 
and ( ),n q q  represents other terms. Dynamic 
modelling is divided into two main categories: 
forward dynamics and inverse dynamics. Forward 
dynamics involve determining the resultant motion 
of the manipulator ( )q  for the input vector τ 
and known states q, q . The relation for forward 
dynamics is given by

1( ) ( ( , ))q M q n q qτ−= − 

Inverse dynamics deal with finding the required 
input vector τ to achieve a specific trajectory 
( ), ,q q q  . The relationship between forward 

Figure 8: Relationship between dynamic analysis.
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						            (41)
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2 1 2 2 2 2 1 1 1 2

( cos( )

cos( ) cos( ) cos( ))

(2 2 cos( )

cos( ) cos( ) cos( ))
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a m a a g

a a a

τ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ θ

= − − + +
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− − + +
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 
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						             (42)

1
.

n

i i i
i

P E m g y
−

= ∑
Where:

mi: Mass of the component

gi: Gravitational force acting on the component

yi: Vertical position of the component

Then, the Lagrangian is:

2 2

1 1

1 ( )
2

n n

i i i i i i
i i

m x y m g y
= =

= + −∑ ∑ L

The input vector τ can be obtained by:
d
dt q q

τ
 ∂ ∂

= − ∂ ∂ 
L L

where q represents the angular position. In 
implementing the mathematical formulation for 
determining the Euler-Lagrange equations within 
a MATLAB environment, the process involves 
translating the equations into code to systematically 
compute the torque input vector for each joint of 
the robotic manipulator. Firstly, the Lagrangian of 
the system is formulated as the difference between 
the kinetic energy and the potential energy. Using 
the given joint parameters such as masses mi, 
gravitational forces gi, and joint velocities 1x  and 

1y , the expressions for kinetic energy and potential 
energy are defined. Subsequently, the Lagrangian 
L  is constructed as the sum of kinetic and potential 
energies. This formulation is then utilized to derive 
the equations of motion using the Euler-Lagrange 
equation, which relates the time derivative of the 
partial derivative of the Lagrangian with respect to 
velocity to the partial derivative of the Lagrangian 
with respect to position.
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recursive manner:

1 1
i i i i

i i i if R f F+ += + 				         (45)
1 1

1 1 1 1 1
i i i i i i i i i
i i i i ci i i i in R n N P F p R f+ +

+ + + + += + + × + × 	        (46)

Ultimately, the joint forces ( )iτ  and joint torques 
are obtained by:

[ ]0,0,1 i
i inτ = 	 for rotary joints	      (47)

[ ]0,0,1 i
i ifτ = 	 for prismatic joints	      (48)

This method allows for a systematic analysis of 
each link, either starting from the end-effector link 
and progressing towards the base link or vice versa.

Integrated Motion Control Framework
Motion control is a crucial subfield of 

automation tasked with managing systems or 
subsystems responsible for precisely maneuvering 
components of machine. It involves monitoring the 
actual trajectory and making real-time adjustments 
to correct position and velocity errors. Integrated 
control algorithms, such as PID control, play a 
fundamental role in governing the performance 
of robots within this framework. In PID control, 
the proportional (P), integral (I), and derivative (D) 
terms are utilized to adjust the control signal based 
on the error between the desired setpoint and the 
actual output. The proportional term responds 
to the current error, the integral term addresses 
accumulated pas errors, and the derivative term 
predicts future error trends, collectively ensuring 
robust closed-loop stability [13]. Within motion 
control, a complex interplay occurs as motion 
profiles and target positions are defined, creating 
trajectories for motors and actuators. Central 
to this process is the integration of a controller 
that elevates a robot from a mere mechanical 
structure to a dynamic system capable of precise 
actions. However, accurately capturing a robot’s 
dynamic model remains a significant challenge. 
Motion control broadly encompasses kinematic 
and dynamic control categories. Kinematic control, 
relying on kinematic models, further divides into 
joint space and task space schemes [14]. The 
Jacobian matrix plays a vital role in both schemes, 
facilitating the translation between joint and task 
spaces for achieving precise and controlled motion 
in robotic systems.

Kinematic control
Joint space scheme: In the joint space scheme, 

the desired inputs include the target joint positions, 

( )
4 3 3 3 1 3 2 1 2 2 1 2

2 2 2 1 1 1

(2 2 cos( ) cos( )

cos( ) cos

a m a a g a

a a

τ θ θ θ θ θ θ

θ θ θ θ θ

= − − + + −

+ + +

  

 
	

						           (43)

Newton-Euler method
The Newton-Euler method, especially in its 

recursive formulation, proves to be a robust 
approach for deriving dynamic equations in robotic 
applications. Its core advantage lies in its efficiency 
in calculating joint forces and torques, facilitating 
a comprehensive analysis of the robot’s dynamic 
behavior. Through forward propagation, joint 
velocities and accelerations for both prismatic and 
rotary joints are determined [12].

For prismatic joints, the angular velocity ( )1
1

i
iω +
+ , 

linear velocity ( )1
1

i
iV +
+  are determined by using velocity 

propagation, angular acceleration ( )1
1

i
iα +
+ , and linear 

acceleration ( )1
1

i
ia +
+  are computed using the following 

expressions:

( )1 1
1

i i i
i i iRα α+ +
+ = 				          (44)

( )1 1
1 1 1

1
1

1 1

( ( )

0 0
0 2 0

i i i i i i i i
i i i i i i i i

i
i

i i

a R a P P

d d

α ω ω

ω

+ +
+ + +

+
+

+ +

= + × + × ×

   
   + + ×    
       

 

For rotary joints, these expressions are modified 
to accommodate the joint angle 1iθ + :

1 1
1

1 1

0 0
0 0i i i i

i i i i

i i

Rα α ω
θ θ

+ +
+

+ +

    
    = + × +    
        

 

( )( )1 1
1 1 1

i i i i i i i i
i i i i i i i ia R a P Pα ω ω+ +
+ + += + × + × ×

From these equations, force ( )i
iF  and moment 

( )i
iN  for each link can be determined. Force ( )i

iF  
is calculated by the product of mass (mi) and linear 
acceleration ( )i

cia , while moment ( )i
iN  involves 

the product of the distance to the center of mass 
( )cil  and angular acceleration ( )i

iα , along with the 
contribution from rotational motion:

i i
i i ciF m a=

( ) ( )i i i i i i i i
ci i i i ci i i cia a a P Pω ω ω= + × × + × ×

( )i i i i
i ci i i ci iN l lα ω ω= + ×

The backward propagation step facilitates 
the computation of joint forces and torques in a 
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Dynamic control
Joint space scheme: In dynamic control within 

the joint space, the desired parameters are the 
target joint positions, ( )dq t , and joint velocities, 

( )dq t , with the latter being set to zero for setpoint 
control. The available information includes the 
actual joint positions, q(t), actual joint velocities 

( )q t , as well as the inertia matrix M(q) and the 
non-linear term ( ),n q q . The control flow for the 
joint space scheme is illustrated in Figure 11.

The control inputs τ are determined by the 
equation

( ) ( ) ( )p d d dk q q k q q g qτ = − + − + 

Where kp and kd are proportional and derivative 
gain matrices, respectively, and g(q) represents 
gravitational effects.

Task space scheme: In dynamic control within 
the task space, the desired parameters are the 
target joint positions, ( )d tµ , and joint velocities, 

( )d tµ . For setpoint control, ( )d tµ  is set to zero. 
The available information includes the actual 

( )dq t , and joint velocities, ( )dq t , with the latter 
being set to zero for serpoint control. The available 
information comprises the actual joint positions, 

( )q t , and the Jacobian matrix ( )J q  along with its 
inverse, ( )1J q− . The control inputs ( )q t  are then 
determined through the relationship

q qd qλ= +  

The control flow for the joint space scheme is 
illustrated in Figure 9.

Task space scheme: In kinematic control within 
the task space, the desired parameters are the 
end-effector positions, ( )d tµ , and the desired end-
effector velocity, ( )d tµ , with the latter being zero 
for setpoint control. The available data includes 
the actual end-effector positions, ( )tµ , and the 
Jacobian matrix ( )J q  with its inverse, ( )1J q− . 
The control inputs ( )q t  are obtained through the 
equation

( ) ( )1
dq J q rµ µ−= +  

Where r is a constant factor. The control flow 
for the task space scheme is illustrated in Figure 10.

Figure 9: Dynamic analysis on joint space scheme.

Figure 10: Dynamic analysis on task space scheme.
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yielded profound insights into both its kinematic 
and dynamic behaviors. The thorough exploration 
encompassing forward kinematics, inverse 
kinematics, and differential kinematics (Section 2) 
has not only elucidated the intricacies of the robot’s 
motion but also enriched our comprehension 
of its positioning capabilities. Moreover, the in-
depth Jacobian analysis presented in Section 3, 
incorporating singularity analysis and velocity 
propagation, has unearthed critical revelations with 
broader implications transcending the confines of 
the specific robot model examined. In section 4, 
the development of the dynamic model employing 
both Lagrangian and Newton Euler methods has 
provided a deeper understanding of the robot’s 
dynamic response and behavior. Significantly, the 
methodologies delineated in Section 5 for kinematic 
and dynamic control have been intentionally 
crafted to constitute an adaptable and integrated 
motion control framework applicable across 
diverse robotic systems. By refraining from solving 
for a singular robot model, this research not only 
contributes to the collective knowledge regarding 

joint positions, μ(t), actual joint velocities ( )tµ , 

inertia matrix M(μ), non-linear term ( ),n µ µ , and 
the Jacobian matrix ( )J q  along with its inverse 

( )1J q− . The control flow for the task space scheme 
is illustrated in Figure 12.

The control inputs τ are determined by the 
equation

( ) ( ) ( ) ( ) ( )
( ) ( )

1

,
d d d p d d dM q J q J q q k k

V q q g q

τ µ µ µ µ µ−  = − + − + − 
+ +

   


 	

	 					          (49)

Where ( ),V q q  represents centrifugal and 
Coriolis effects, and g(q) captures gravitational 
effects. This formulation highlights the intricate 
relationship between joint and task spaces in 
achieving dynamic control for robotic systems.

Conclusion
In conclusion, the comprehensive investigation 

conducted on the 4-axis SCARE IRB 930 robot has 

Figure 12: Dynamic analysis on task space scheme.

Figure 11: Dynamic analysis on joint space scheme.
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7.	 Webster RJ III, Jones BA (2010) Design and kinematic 
modeling of constant curvature continuum robots: 
A review. The International Journal of Robotics 
Research 29: 1661-1683.

8.	 Merlet JP (2007) Jacobian, manipulability, condition 
number and accuracy of parallel robots. In: Thrun 
S, Brooks R, Durrant-Whyte H, Robotics Research. 
Springer Tracts in Advanced Robotics, vol 28. 
Springer, Berlin, Heidelberg.

9.	 Donelan P (2010) Kinematic singularities of robot 
manipulators. Advances in Robot Manipulators. 
Ernest Hall, InTech. ISBN: 978-953-307-070-4.

10.	 Fahimi F, Ashrafiuon H, Nataraj C (2002) An 
improved inverse kinematic and velocity solution for 
spatial hyperredundant robots. IEEE Transactions 
on Robotics and Automation 18: 103-107.

11.	 Kardoš J (2010) The simplified dynamic model of 
a robot manipulator. In Proceedings of the 18th 
International Conference: 1-6.

12.	 De Luca A, Ferrajoli L (2009) A modified newton-
euler method for dynamic computations in robot 
fault detection and control. IEEE International 
Conference on Robotics and Automation, Kobe, 
Japan, 3359-3364.

13.	 Astrom KJ, Hagglund Tore (1995) PID Controllers: 
Theory, Design, and Tuning. The International 
Society of Measurement and Control (2nd edn).

14.	 Chung WK, Fu L-C, Kröger T (2016) Motion control. 
Springer handbook of robotics, 163-194.

the 4-axis SCARA ABB IRB 930 robot also offers a 
versatile and universally applicable framework 
with far-reaching implications for the advancement 
of robotics and control methodologies. These 
findings represent a significant stride towards the 
evolution and enhancement of the research field, 
offering invaluable insights poised to propel future 
innovations in robotics and control theory.
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