Appendix

Code 1:

int in=0,out=0;

item buffer[n];

Semaphore mutex=1,empty=n,full=0;

void producer(){

do {
 ……

produce an item in nextp;

 ……

wait(empty); //waiting for the number of empty buffers is not 0.

wait(mutex); //waiting for no process to operate the buffer. These 2sentences reversed may be deadlocked

buffer(in)=nextp; //put the product on buffer[in]

in=(in+1)%n;

signal(mutex); //allow other processes to operate buffers

signal(full); //increase the number of buffers already used

 }while(1);

}

void consumer(){

do {

wait(full); //waiting for the number of empty buffers is not 0.

wait(mutex); //waiting for no process to operate the buffer. These 2sentences reversed may be deadlocked

nextc=buffer(out); //take out the product from buffer[out]

out=(out+1)%n;

signal(mutex); //allow other processes to operate buffers

signal(empty); //increase the number of buffers already used

consume the item in nextc; //consume the product of nextc

 ...

 } while(1);

}

void main() { //main program

cobegin

producer(); consumer();

coend

}

Code 2:

semaphorermutex=1,wmutex=1;

intreadcount=0;

void reader(){

do{

wait(rmutex); //wait for no process to access the critical section of readcount if(readcount= =0) wait(wmutex); //wait

 for no writer to write
readcount++; //number of readers plus 1

signal(rmutex); //allow other process to visit readcount and read data

read data:
wait(rmutex); //wait for no process to access the critical section of readcountreadcount--; //number of readers minus
 1
if(readcount==0) signal(wmutex); //allow writers to write

signal(rmutex); //allow other process to visit readcount

}while(1);

}

void writer() {

do {

wait(wmutex); //Wait for no one to write and read

write data;
signal(wmutex); //allow them to write and read

}while(1);

}

void main(){ //main program

cobegin

reader(); writer();

coend

}

Code 3:

Semaphore mutex=1;

Semaphore odd=0; Semaphore even=0;

Semaphore empty=N;

main()

cobegin

{

process P1

while(1){

number=produce();//generate a number

wait(empty);//determine whether the buffer has empty units

 wait(mutex);//determine whether the buffer is occupied

 put();

signal(mutex);//after using the buffer, buffer need to be released

if(number % 2==0)

signal(even);//If it is even, wake up the process in even

else

signal(odd); //If it is odd, wake up the process in odd

}

process P2

while (1){

wait(odd);//receive information from the odd semaphore and produce an
 odd number
wait(mutex); //determine whether the buffer is occupied

getodd();

signal(mutex); ///after using the buffer, buffer need to be released

signal(empty);//signals to the P1 can produce data

countodd();//statistic odd numbers

}

process P3

while (1){

wait(even); ///receive information from the even semaphore and produce an even number

wait(mutex); //determine whether the buffer is occupied

geteven();

signal(mutex); ///after using the buffer, buffer need to be released

signal(empty); //signals to the P1 can produce data

counteven();//statistic even numbers

}

}

coend

