
R
es

ea
rc

h
A

rt
ic

le
: O

pe
n

A
cc

es
s

Hao et al. Int J Signal Process Anal 2017, 2:003

International Journal of

Signal Processing
and Analysis

Received: October 17, 2017: Accepted: December 13, 2017: Published: December 15, 2017

Citation: Hao X, Ming C, Shen YC, Long XY (2017) Preliminary Analysis of Synchronization and Mutual Exclusion of
Process in Operating System. Int J Signal Process Anal 2:003

Copyright: © 2017 Hao X, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

*Corresponding author: Xu Yun Long, Applied Technology College of Soochow University, Suzhou Jiangsu 215325,
China, E-mail: 11432123@qq.com

VIBGYOR
ISSN: 2631-5114

Preliminary Analysis of Synchronization and Mutual Exclu-
sion of Process in Operating System
Xie Hao, Chen Ming, Yang Chao Shen and Xu Yun Long*

Applied Technology College of Soochow University, China

Introduction
Operating system is the most important control and

management center of computer system, whose import-
ant feature is process concurrency. After introducing
process concurrency, each process can execute simulta-
neously and move forward at independent speed, which
improve resource utilization and system throughput; At
the same time, promote system performance. However,
they share system resources and work together, which
produce complicated and mutually restricted relation-
ship between processes and cause “chaos” to program
execution. To make the concurrent execution process-
es share the resources and work together effectively and
make program execution with reproducibility, it needs
reasonable control and coordination for correct opera-
tion. Operating system provides process synchronization
mechanism to solve these problems, ensuring the normal
activities of all processes within the system.

In Synchronization, for example, process A needs to

Abstract
The synchronization and mutual exclusion between operating system processes is the key point
and difficulty of this course. Synchronization is the process of sending messages with each other
between groups of concurrent processes in an asynchronous environment due to direct constraints,
making all processes carried out at a certain speed. Mutual exclusion means that two or over two
concurrent processes that share this resource cannot go into the critical zone simultaneously. There
are four types on the realization mechanisms of process synchronization and mutual exclusion:
Semaphore, monitor, rendezvous and distribution system. The basic principle of semaphore
mechanism is that two or more processes cooperate through simple signal application and release.
The process applies for signal through execution primitive P(s) and releases signal through
execution primitive V(s).
Keywords
Operating system, Process, Semaphore, P, V operation

read the information generated by the process B from the
buffer, when the buffer is empty, the process B is blocked
because it cannot read information. When the process A
generates information into the buffer, the process B will
be awakened.

In Mutual Exclusion like process B needs to access the
printer, but at this point process A occupies the printer,
process B will be blocked, until the process A released the
printer resources, process B can resume.

Summary of Related Theories
Process synchronization and mutual exclusion

Process synchronization realizes ordered access of
visitor for resource through other mechanisms on the
basis of mutual exclusion. Under most situations, syn-
chronization has realized mutual exclusion; in particu-
lar, all written resource situations must be mutually ex-
clusive. Minority cases refer to that several visitors can
access resource at the same time.

• Page 2 of 5 •Hao et al. Int J Signal Process Anal 2017, 2:003

Citation: Hao X, Ming C, Shen YC, Long XY (2017) Preliminary Analysis of Synchronization and Mutual Exclusion of
Process in Operating System. Int J Signal Process Anal 2:003

ISSN: 2631-5114 |

Process mutual exclusion refers to that only one vis-
itor is allowed to access one resource. It is with unique-
ness and exclusion. However, mutual exclusion can’t
restrict the access order of visitor for resource, which is
that the access is unordered [1].

Critical zone and critical resource
Critical zone refers to the program that accesses crit-

ical resource in each process. The access of process for
critical zone has to be mutually exclusive. Only one pro-
cess is allowed to access critical zone each time and oth-
er processes need to wait. Critical resource refers to the
resource that only allows one process access each time.

The basic principle of critical zone management is
that if several processes want to access free critical zone,
it only allows one process each time. At any time, the
process in critical zone can’t exceed one. If the critical
zone already has one process, other processes that try to
access critical zone have to wait. The process accessing
critical zone has to exit within limited time, so that other
processes can enter their critical zones timely. If the pro-
cess can’t access own critical zone, it should give up CPU
and avoid “busy” phenomenon in process.

Realize Process Mutual Exclusion with Sema-
phore

How to make sure that only one process accesses re-
source at one moment? This is the management method
of critical resource. The semaphore and P, V operation
mechanism proposed by Dijkstra has been introduced
after introducing some immature management plans.

Definition of semaphore
Semaphore is that process is forced to stop the exe-

cution at one special point until receive a correspond-
ing special variable value [2]. The process uses P, V two
primitive operations to send and receive signal. If the
signal is not sent out, the process will be hanged until the
signal is sent out.

Semaphore can be categorized into integer sema-
phore and recorded semaphore based on its value.

It needs to be noticed that in integer signal, wait(s)
and signal(s) are two atom manipulations; therefore,
they can’t be interrupted during execution. In addition,
in wait operation, test for s value and s-operation can’t
be interrupted, so this mechanism does not follow the
principle of “let right to wait”, it will produce “busy wait”
problem, which affect the operation efficiency of the sys-
tem seriously.

In recorded semaphore, it adopts “let right to wait”
strategy, but there will be the situation that several pro-
cesses wait the same critical resource. Therefore, it needs

to use a value representing resource number, but also
needs to add a linked list pointer list for the process of
link jam wait.

P, V operation definition description
In semaphore structure, it needs an integer count

and a waiting object. P operation means existing process
applies for resources to the system, decrease semaphore
value by 1, such as s.value < 0, and then this process en-
ters blocked queue. V operation means existing process
releases this resource, increase semaphore value by 1
and number of system available resource can add one. If
s.value ≤ 0, it means there is waiting process in blocked
queue, and then it will wake up one of the first processes
[3].

Synchronization Problem of Classical Process
Problem of producer-consumer

The problem description is: One group of producer
process is producing product and the product will be
provided to consumer for consumption. To ensure the
concurrent execution between producer and consumer,
set n buffer pools between them. Producer process can
put their produced products into one buffer pool. Con-
sumer process can get a product for consumption from
one buffer zone.

Problem analysis: Set two synchronous semaphores:
One is to explain the number of empty buffer zones, ex-
pressed with empty. The initial value is the number of
buffer zones n in public buffer pool; the other is to ex-
plain the number of the full butter zones, expressed with
full and the initial value is 0. It needs to operate bounded
buffer zone in executing production activity and con-
sumption activity. Bounded butter zone is a critical re-
source and has to be used mutually exclusive. Therefore,
it needs to set one mutex and the initial value is 1.

Specific implementation code is in the Appendix
Code 1.

Problem of reader and writer
Problem description: There are two groups of concur-

rent processes. Reader and writer share one data zone or
one shared file. Requirement: It allows several readers to
operate at the same time; it does not allow reader and
writer to operate at the same time; it does not allow sev-
eral writers to operate at the same time. When one reader
process is reading, writer process is not allowed to write.
The essence is that reader takes the priority.

Problem analysis:

If reader comes:

1) If there is no reader and writer, new reader can
read.

• Page 3 of 5 •Hao et al. Int J Signal Process Anal 2017, 2:003

Citation: Hao X, Ming C, Shen YC, Long XY (2017) Preliminary Analysis of Synchronization and Mutual Exclusion of
Process in Operating System. Int J Signal Process Anal 2:003

ISSN: 2631-5114 |

2) If there is writer waiting, but other readers are
reading, and then the new reader can read.

3) If there is writer writing, new reader shall wait.

If writer comes:

1) If there is no reader, new writer can write.

2) If there is reader, new writer should wait.

3) If there are other writers, new writer should wait.

The following codes adopt recorded semaphore set to
solve reader-writer problem (reader takes priority):

Set two semaphores wmutex = 1, rmutex = 1

Set another global variable readcount = 0, it indicates
the number of readers that are reading.

(Why use readcount for counting? If writer comes, it
has to wait all readers to sign out. If there is no counting,
how can we know that all the readers are signing out?)

Wmutex is used for the mutual exclusion between
reader and writer, between writer and writer.

Rmutex is used for the mutex access of this critical
resource.

Specific implementation code is in the Appendix
Code 2.

From another perspective, what will be the situation
if “writer takes priority”? That is when shared data zone
is occupied by reader, the subsequent arrival readers can
continue to access. If a writer comes and blocks the wait-
ing, and then several readers come behind the writer will
block waiting.

In other words, new reader will not be allowed to read
data as long as there is one writer applying for writing
data. This solution solves the problem of writer hungry,
but it greatly decreases concurrent program and the sys-
tem performance is poor.

Complicated process synchronization and mutual
exclusion problem

Problem description: Three processes P1, P2 and P3
mutual exclusions use one buffer zone with N (N > 0)
units. P1 generates one positive integer with product ()

and transfer to one empty unit in buffer zone with put
(); P2 selects one odd from this buffer zone with get odd
() every time and uses count odd () to make statistics for
the number of odds; P3 selects one even from this buf-
fer zone with get even () every time and uses count even
() to make statistics for the number of evens. Please use
semaphore mechanism to realize the synchronization
and mutual exclusion activity of these three processes,
explain the meaning of the defined semaphore and de-
scribe them with pseudo code.

Problem analysis: Buffer zone is a mutually exclusive
resource; therefore, mutex semaphore is set. P1 and P2
are synchronous due to odd placement and retrieval; set
synchronous semaphore odd; P1 and P3 are synchro-
nous due to even placement and retrieval; set synchro-
nous semaphore even; P1, P2 and P3 set synchronous
semaphore empty due to shared buffer zone.

Specific implementation code is in the Appendix
Code 3.

Conclusion
The synchronization mechanism of process well

solves the numerous problems brought by process con-
currency in operating system, but this is not the only
method. In practical application, we should study and
think more, ensure numerous concurrent processes
share system resource and coordinate with each other
more effectively and ensure the normal operation of all
processes. In addition, the concurrency among numer-
ous processes may make system trapped into deadlock. It
should take corresponding measures to promote process
get out of deadlock state quickly, so that it can improve
the system performance. This is the target pursued by
operating system.

References
1. Sun Zhongxiu, Fei Xiangli, Luobin (2008) Operating Sys-

tem Tutorial [M]. Higher Education Press, Beijing, China.

2. Tang Xiaodan, Liang Hongbing, Zhe Fengping (2003)
Computer Operating System (revised) [M]. Xidian Univer-
sity Press, Xi'an, China.

3. Chen Xiangqun, Yang Fuqing (2006) Operating System
Tutorial [M], 2 version. Peking University Press, Beijing,
China.

• Page 4 of 5 •Hao et al. Int J Signal Process Anal 2017, 2:003

Citation: Hao X, Ming C, Shen YC, Long XY (2017) Preliminary Analysis of Synchronization and Mutual Exclusion of
Process in Operating System. Int J Signal Process Anal 2:003

ISSN: 2631-5114 |

Appendix
Code 1:
int in=0,out=0;
item buffer[n];
Semaphore mutex=1,empty=n,full=0;
void producer(){
do {
 ……
produce an item in nextp;
 ……
wait(empty); //waiting for the number of empty buffers
is not 0.
wait(mutex); //waiting for no process to operate the buf-
fer. These 2sentences reversed may be deadlocked
buffer(in)=nextp; //put the product on buffer[in]
in=(in+1)%n;
signal(mutex); //allow other processes to operate buffers
signal(full); //increase the number of buffers already used
 }while(1);
}
void consumer(){
do {
wait(full); //waiting for the number of empty buffers is
not 0.
wait(mutex); //waiting for no process to operate the buf-
fer. These 2sentences reversed may be deadlocked
nextc=buffer(out); //take out the product from
buffer[out]
out=(out+1)%n;
signal(mutex); //allow other processes to operate buffers
signal(empty); //increase the number of buffers already
used
consume the item in nextc; //consume the product of
nextc
 ...
 } while(1);
}
void main() { //main program

cobegin

producer(); consumer();

coend

}

Code 2:
semaphorermutex=1,wmutex=1;

intreadcount=0;

void reader(){

do{

wait(rmutex); //wait for no process to access the critical
section of readcount if(readcount= =0) wait(wmutex); //
wait

 for no writer to write

readcount++; //number of readers plus 1

signal(rmutex); //allow other process to visit readcount
and read data

read data:

wait(rmutex); //wait for no process to access the critical
section of readcountreadcount--; //number of readers
minus

 1

if(readcount==0) signal(wmutex); //allow writers to
write

signal(rmutex); //allow other process to visit readcount

}while(1);

}

void writer() {

do {

wait(wmutex); //Wait for no one to write and read

write data;

signal(wmutex); //allow them to write and read

}while(1);

}

void main(){ //main program

cobegin

reader(); writer();

coend

}

Code 3:
Semaphore mutex=1;

Semaphore odd=0; Semaphore even=0;

Semaphore empty=N;

main()

• Page 5 of 5 •Hao et al. Int J Signal Process Anal 2017, 2:003

Citation: Hao X, Ming C, Shen YC, Long XY (2017) Preliminary Analysis of Synchronization and Mutual Exclusion of
Process in Operating System. Int J Signal Process Anal 2:003

ISSN: 2631-5114 |

 odd number

wait(mutex); //determine whether the buffer is occupied

getodd();

signal(mutex); ///after using the buffer, buffer need to be
released

signal(empty);//signals to the P1 can produce data

countodd();//statistic odd numbers

}

process P3

while (1){

wait(even); ///receive information from the even sema-
phore and produce an even number

wait(mutex); //determine whether the buffer is occupied

geteven();

signal(mutex); ///after using the buffer, buffer need to be
released

signal(empty); //signals to the P1 can produce data

counteven();//statistic even numbers

}

}

coend

cobegin

{

process P1

while(1){

number=produce();//generate a number

wait(empty);//determine whether the buffer has empty
units

 wait(mutex);//determine whether the buffer is
occupied

 put();

signal(mutex);//after using the buffer, buffer need to be
released

if(number % 2==0)

signal(even);//If it is even, wake up the process in even

else

signal(odd); //If it is odd, wake up the process in odd

}

process P2

while (1){

wait(odd);//receive information from the odd sema-
phore and produce an

	Title
	Abstract
	Keywords
	Introduction
	Summary of Related Theories
	Process synchronization and mutual exclusion
	Critical zone and critical resource

	Realize Process Mutual Exclusion with Semaphore
	Definition of semaphore
	P, V operation definition description

	Synchronization Problem of Classical Process
	Problem of producer-consumer
	Problem of reader and writer
	Complicated process synchronization and mutual exclusion problem

	Conclusion
	References
	Appendix
	Code 1
	Code 2
	Code 3

